Popis: |
Optical interrogation and manipulation of neural dynamics is a cornerstone of systems neuroscience. Genetic targeting enable delivering fluorescent indicators and opsins to specific neural subpopulations. Optic probes can fluorescently sense and convey calcium, voltage, and neurotransmitter dynamics. This optical toolkit enables recording and perturbing cellular-resolution activity in thousands of neurons across a field of view. Yet these techniques are limited by the light scattering properties of tissues. The cutting edge of microscopy, three-photon imaging, can record from intact tissues at depths up to 1 mm, but requires head-fixed experimental paradigms. To access deeper layers and non-cortical structures, researchers rely on optical implants, such as GRIN lenses or prisms, or the removal of superficial tissue. In this thesis, we introduce a novel implant for interfacing with deep brain regions constructed from bundles of hundreds or thousands of dissociated, small diameter |