Popis: |
Among the various factors limiting accurate positioning with a Global Navigation Satellite System (GNSS) is the inherent code error level on a code observation, cycle slip occurrence on a phase observation, inadequate accuracy in the broadcast ionospheric model for single-frequency receivers; and the occurrence of observation gaps, which are short duration satellite outages (temporal loss of an observed satellite). The existing Cycle Slip Detection and Correction (CSDC) techniques are usually multi-satellite based; quite computationally intensive; and are often marred by the inherent code errors from the included code observations. Also, existing code-carrier smoothing techniques employed to mitigate code errors are limited by cycle slip occurrences on phase observations. In this research, algorithms are proposed in order to facilitate simple, efficient and real-time cycle slip detection, determination and correction, on a standalone single- or dual-frequency receiver; to enable cycle-slip-resilient code errors mitigation; and to improve the broadcast ionospheric model for single-frequency receivers. The proposed single-satellite and phase-only-derived CSDC algorithms are based on adaptive time differencing of short time series phase observables. To further provide robustness to the impact of an observation gap occurrence for an observed satellite, post-gap ionospheric delay is predicted assuming a linearly varying ionospheric delay over a short interval, which consequently enables the dual-frequency post-gap cycle slip determination and code error mitigation. The proposed CSDC algorithms showed good performance, with or without simulated cycle slips on actual data obtained with static and kinematic GNSS receivers. Over different simulated cycle slip conditions, a minimum of 97.3% correct detection and 79.8% correctly fixed cycle slips were achieved with single-frequency data; while a minimum of 99.9% correct detection and 95.1% correctly fixed cycle slips were achieved with dual-frequency data. The point positioning results obtained with the proposed methods that integrates the new code error mitigation and cycle slip detection and correction algorithms, showed significant improvement over the conventional code-carrier smoothing technique (i.e. a standalone Hatch filter, without inclusion of any cycle slip fixing method). Under different simulated cycle slip scenarios, the new methods achieved 25-42% single-frequency positioning accuracy improvement over the standalone Hatch filter, and achieved 18-55% dual-frequency positioning accuracy improvement over the standalone Hatch filter. |