Popis: |
All atomic force microscope (AFM) images suffer from distortions, which are principally produced by the interaction between the measured sample and the AFM tip. If the three-dimensional shape of the tip is known, the distorted image can be processed and the original surface form ' restored' typically by deconvolution approaches. This restored image gives a better representation of the real 3D surface or the measured sample than the original distorted image. In this thesis, a quantitative investigation of using morphological deconvolution has been used to restore AFM images via computer simulation using various computer simulated tips and objects. This thesis also presents the systematic quantitative study of the blind tip estimation algorithm via computer simulation using various computer simulated tips and objects. This thesis proposes a new method for estimating the impulse response of the AFM by measuring a micro-cylinder with a-priori known dimensions using contact mode AFM. The estimated impulse response is then used to restore subsequent AFM images, when measured with the same tip, under similar measurement conditions. Significantly, an approximation to what corresponds to the impulse response of the AFM can be deduced using this method. The suitability of this novel approach for restoring AFM images has been confirmed using both computer simulation and also with real experimental AFM images. This thesis suggests another new approach (impulse response technique) to estimate the impulse response of the AFM. this time from a square pillar sample that is measured using contact mode AFM. Once the impulse response is known, a deconvolution process is carried out between the estimated impulse response and typical 'distorted' raw AFM images in order to reduce the distortion effects. The experimental results and the computer simulations validate the performance of the proposed approach, in which it illustrates that the AFM image accuracy has been significantly improved. A new approach has been implemented in this research programme for the restoration of AFM images enabling a combination of cantilever and feedback signals at different scanning speeds. In this approach, the AFM topographic image is constructed using values obtained by summing the height image that is used for driving the Z-scanner and the deflection image with a weight function oc that is close to 3. The value of oc has been determined experimentally using tri al and error. This method has been tested 3t ten different scanning speeds and it consistently gives more faithful topographic images than the original AFM images. |