Popis: |
The stratospheric ozone layer provides protection for Earth's land-based organisms against harmful ultraviolet (UV) radiation, but the past century has seen the ozone layer compromised as a result of human activity, resulting in commensurate shifts in surface UV-B flux. Despite the importance of UV radiation to the well-being of life, records of surface UV-B flux only exist for a short period of time. In order to gain a deeper understanding of the behaviour of ozone and UV-B flux in the past an alternative method of determining UV-B is required. Changes in spore chemistry have been proposed as a palaeo-monitor of UV-B flux, which can then be related to stratospheric ozone abundance. By employing the rapid and inexpensive technique of FTIR microspectroscopy to investigate changes in spore chemistry, a large dataset spanning seven different spatial and temporal UV regimes has been generated in order to evaluate the feasibility of routine usage of a spore-based UV-B proxy. |