Magnesiothermic Conversion of Sintered-Closely Packed Diatom (Coscinodiscus wailesii) Monolayer on Silicon Wafer and its Optical Properties.

Jazyk: angličtina
Rok vydání: 2018
Předmět:
Druh dokumentu: Master's Thesis
Popis: The hierarchical silica structure of the Coscinodiscus wailesii diatom was studied due to its intriguing optical properties. To bring the diatom into light harvesting applications, three crucial factors were investigated, including closely-packed diatom monolayer formation, bonding of the diatoms on a substrate, and conversion of silica diatom shells into silicon. The closely-packed monolayer formation of diatom valves on silicon substrates was accomplished using their hydrodynamic properties and the surface tension of water. Valves dispersed on a hydrophobic surface were able to float-up with a preferential orientation (convex side facing the water surface) when water was added. The floating diatom monolayer was subsequently transferred to a silicon substrate. A closely-packed diatom monolayer on the silicon substrate was obtained after the water evaporated at room temperature. The diatom monolayer was then directly bonded onto the substrate via a sintering process at high temperature in air. The percentage of bonded valves increased as the temperature increased. The valves started to sinter into the substrate at 1100°C. The sintering process caused shrinkage of the nanopores at temperatures above 1100°C. The more delicate structure was more sensitive to the elevated temperature. The cribellum, the most intricate nanostructure of the diatom (~50 nm), disappeared at 1125°C. The cribrum, consisting of approximated 100-300 nm diameter pores, disappeared at 1150°C. The areola, the micro-chamber-liked structure, can survive up to 1150°C. At 1200°C, the complete nanostructure was destroyed. In addition, cross-section images revealed that the valves fused into the thermally-grown oxide layer that was generated on the substrate at high temperatures. The silica-sintered diatom close-packed monolayer, processed at 1125°C, was magnesiothermically converted into porous silicon using magnesium silicide. X-ray diffraction, infrared absorption, energy dispersive X-say spectra and secondary electron images confirmed the formation of a Si layer with preserved diatom nano-microstructure. The conversion process and subsequent application of a PEDOT:PSS coating both decreased the light reflection from the sample. The photocurrent and reflectance spectra revealed that the Si-diatom dominantly enhanced light absorption between 414 to 586 nm and 730 to 800 nm. Though some of the structural features disappeared during the sintering process, the diatom is still able to improve light absorption. Therefore, the sintering process can be used for diatom direct bonding in light harvesting applications.
Dissertation/Thesis
Masters Thesis Materials Science and Engineering 2018
Databáze: Networked Digital Library of Theses & Dissertations