Användning av artificiella neurala nätverk (ANNs) för att upptäcka cyberattacker: En systematisk litteraturgenomgång av hur ANN kan användas för att identifiera cyberattacker

Autor: Wongkam, Nathalie, Shameel, Ahmed Abdulkareem Shameel
Jazyk: švédština
Rok vydání: 2023
Předmět:
Druh dokumentu: Text
Popis: Denna studie undersöker användningen av maskininlärning (ML), särskilt artificiella neurala nätverk (ANN), inom nätverksdetektering för att upptäcka och förebygga cyberattacker. Genom en systematisk litteraturgenomgång sammanställs och analyseras relevant forskning för att erbjuda insikter och vägledning för framtida studier. Forskningsfrågorna utforskar tillämpningen av maskininlärningsalgoritmer för att effektivt identifiera och förhindra nätverksattacker samt de utmaningar som uppstår vid användningen av ANN. Metoden innefattar en strukturerad sökning, urval och granskning av vetenskapliga artiklar. Resultaten visar att maskininlärningsalgoritmer kan effektivt användas för att bekämpa cyberattacker. Dock framkommer utmaningar kopplade till ANNs känslighet för störningar i nätverkstrafiken och det ökade behovet av stor datamängd och beräkningskraft. Studien ger vägledning för utveckling av tillförlitliga och kostnadseffektiva ANN-baserade lösningar inom nätverksdetektering. Genom att sammanställa och analysera befintlig forskning ger studien en djupare förståelse för tillämpningen av ML-algoritmer, särskilt ANN, inom cybersäkerhet. Detta bidrar till kunskapsutveckling och tillför en grund för framtida forskning inom området. Studiens betydelse ligger i att främja utvecklingen av effektiva lösningar för att upptäcka och förebygga nätverksattacker.
This research study investigates the application of machine learning (ML), specifically artificial neural networks (ANN), in network intrusion detection to identify and prevent cyber-attacks. The study employs a systematic literature review to compile and analyse relevant research, aiming to offer insights and guidance for future studies. The research questions explore the effectiveness of machine learning algorithms in detecting and mitigating network attacks, as well as the challenges associated with using ANN. The methodology involves conducting a structured search, selection, and review of scientific articles. The findings demonstrate the effective utilization of machine learning algorithms, particularly ANN, in combating cyber-attacks. The study also highlights challenges related to ANN's sensitivity to network traffic disturbances and the increased requirements for substantial data and computational power. The study provides valuable guidance for developing reliable and cost-effective solutions based on ANN for network intrusion detection. By synthesizing and analysing existing research, the study contributes to a deeper understanding of the practical application of machine learning algorithms, specifically ANN, in the realm of cybersecurity. This contributes to knowledge development and provides a foundation for future research in the field. The significance of the study lies in promoting the development of effective solutions for detecting and preventing network attacks.
Databáze: Networked Digital Library of Theses & Dissertations