Evaluating credal set theory as a belief framework in high-level information fusion for automated decision-making
Autor: | Karlsson, Alexander |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: | |
Druh dokumentu: | Doctoral Thesis<br />Text |
Popis: | High-level information fusion is a research field in which methods for achieving an overall understanding of the current situation in an environment of interest are studied. The ultimate goal of these methods is to provide effective decision-support for human or automated decision-making. One of the main proposed ways of achieving this is to reduce the uncertainty, coupled with the decision, by utilizing multiple sources of information. Handling uncertainty in high-level information fusion is performed through a belief framework, and one of the most commonly used such frameworks is based on Bayesian theory. However, Bayesian theory has often been criticized for utilizing a representation of belief and evidence that does not sufficiently express some types of uncertainty. For this reason, a generalization of Bayesian theory has been proposed, denoted as credal set theory, which allows one to represent belief and evidence imprecisely. In this thesis, we explore whether credal set theory yields measurable advantages, compared to Bayesian theory, when used as a belief framework in high-level information fusion for automated decision-making, i.e., when decisions are made by some pre-determined algorithm. We characterize the Bayesian and credal operators for belief updating and evidence combination and perform three experiments where the Bayesian and credal frameworks are evaluated with respect to automated decision-making. The decision performance of the frameworks are measured by enforcing a single decision, and allowing a set of decisions, based on the frameworks’ belief and evidence structures. We construct anomaly detectors based on the frameworks and evaluate these detectors with respect to maritime surveillance. The main conclusion of the thesis is that although the credal framework uses considerably more expressive structures to represent belief and evidence, compared to the Bayesian framework, the performance of the credal framework can be significantly worse, on average, than that of the Bayesian framework, irrespective of the amount of imprecision. Högnivåfusion är ett forskningsområde där man studerar metoder för att uppnå en övergripande situationsförståelse för någon miljö av intresse. Syftet med högnivåfusion är att tillhandahålla ett effektivt beslutstöd for mänskligt eller automatiskt beslutsfattande. För att åstadkomma detta har det föreslagits att man ska reducera osäkerhet kring beslutet genom att använda flera olika källor av information. Det främsta verktyget för att hantera osäkerhet inom högnivåfusion är ett ramverk för att hantera evidensbaserad trolighet och evidenser kring en given tillståndsrymd. Ett av de vanligaste ramverken som används inom högnivåfusion för detta syfte är baserad på Bayesiansk teori. Denna teori har dock ofta blivit kritiserad för att den använder en representation av evidensbaserad trolighet och evidenser som inte är tillräckligt uttrycksfull för att representera vissa typer av osäkerheter. På grund av detta har en generalisering av Bayesiansk teori föreslagits, kallad “credal set theory“, där man kan representera evidensbaserad trolighet och evidenser oprecist. I denna avhandling undersöker vi om “credal set theory“ medför mätbara fördelar, jämfört med Bayesiansk teori, då det används som ett ramverk i högnivåfusion för automatiskt beslutsfattande, dvs. när ett beslut fattas av en algoritm. Vi karaktäriserar Bayesiansk och “credal“ operatorer för updatering av evidensbaserad trolighet och kombination av evidenser och vi presenterar tre experiment där vi utvärderar ramverken med avseende på automatiskt beslutsfattande. Utvärderingen genomförs med avseende på ett enskilt beslut och för en mängd beslut baserade på ramverkens strukturer för evidensbaserad trolighet och evidens. Vi konstruerar anomalidetektorer baserat på de två ramverken som vi sedan utvärderar med avseende på maritim övervakning.Den främsta slutsatsen av denna avhandling är att även om “credal set theory“ har betydligt mer uttrycksfulla strukturer för att representera evidensbaserad trolighet och evidenser kring ett tillståndsrum, jämfört med det Bayesianska ramverket, så kan “credal set theory“ prestera signifikant sämre i genomsnitt än det Bayesianska ramverket, oberoende av mängden oprecision. Examining Committee: Arnborg, Stefan, Professor (KTH Royal Institute of Technology), Kjellström, Hedvig, Associate Professor (Docent) (KTH Royal Institute of Technology), Saffiotti, Alessandro, Professor (Örebro University) |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |