Event-Cap – Event Ranking and Transformer-based Video Captioning

Autor: Cederqvist, Gabriel, Gustafsson, Henrik
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Druh dokumentu: Text
Popis: In the field of video surveillance, vast amounts of data are gathered each day. To be able to identify what occurred during a recorded session, a human annotator has to go through the footage and annotate the different events. This is a tedious and expensive process that takes up a large amount of time. With the rise of machine learning and in particular deep learning, the field of both image and video captioning has seen large improvements. Contrastive Language-Image Pretraining is capable of efficiently learning a multimodal space, thus able to merge the understanding of text and images. This enables visual features to be extracted and processed into text describing the visual content. This thesis presents a system for extracting and ranking important events from surveillance videos as well as a way of automatically generating a description of the event. By utilizing the pre-trained models X-CLIP and GPT-2 to extract visual information from the videos and process it into text, a video captioning model was created that requires very little training. Additionally, the ranking system was implemented to extract important parts in video, utilizing anomaly detection as well as polynomial regression. Captions were evaluated using the metrics BLEU, METEOR, ROUGE and CIDEr, and the model receives scores comparable to other video captioning models. Additionally, captions were evaluated by experts in the field of video surveillance, who rated them on accuracy, reaching up to 62.9%, and semantic quality, reaching 99.2%. Furthermore the ranking system was also evaluated by the experts, where they agree with the ranking system 78% of the time.
Inom videoövervakning samlas stora mängder data in varje dag. För att kunna identifiera vad som händer i en inspelad övervakningsvideo så måste en människa gå igenom och annotera de olika händelserna. Detta är en långsam och dyr process som tar upp mycket tid. Under de senaste åren har det setts en enorm ökning av användandet av olika maskininlärningsmodeller. Djupinlärningsmodeller har fått stor framgång när det kommer till att generera korrekt och trovärdig text. De har också använts för att generera beskrivningar för både bilder och video. Contrastive Language-Image Pre-training har gjort det möjligt att träna en multimodal rymd som kombinerar förståelsen av text och bild. Detta gör det möjligt att extrahera visuell information och skapa textbeskrivningar. Denna master uppsatts beskriver ett system som kan extrahera och ranka viktiga händelser i en övervakningsvideo samt ett automatiskt sätt att generera beskrivningar till dessa. Genom att använda de förtränade modellerna X-CLIP och GPT-2 för att extrahera visuell information och textgenerering, har en videobeskrivningsmodell skapats som endast behöver en liten mängd träning. Dessutom har ett rankingsystem implementerats för att extrahera de viktiga delarna i en video genom att använda anomalidetektion och polynomregression. Video beskrivningarna utvärderades med måtten BLEU, METOER, ROUGE och CIDEr, där modellerna får resultat i klass med andra videobeskrivningsmodeller. Fortsättningsvis utvärderades beskrivningarna också av experter inom videoövervakningsområdet där de fick besvara hur bra beskrivningarna var i måtten: beskrivningsprecision som uppnådde 62.9% och semantisk kvalité som uppnådde 99.2%. Ranknignssystemet utvärderades också av experterna. Deras åsikter överensstämde till 78% med rankningssystemet.
Databáze: Networked Digital Library of Theses & Dissertations