Popis: |
Semantic segmentation is the process of assigning a specific class label to each pixel in an image. There are multiple areas of use for semantic segmentation of remote sensing images, including climate change studies and urban planning and development. When training a network to perform semantic segmentation in a supervised manner, annotated data is crucial, and annotating satellite images is an expensive and time-consuming task. A resolution to this issue might be self-supervised learning. Training a pretext task on a large unlabeled dataset, and a downstream task on a smaller labeled dataset, could mitigate the need for large amounts of labeled data. In this thesis, the use of self-supervised learning for semantic segmentation of remote sensing data is investigated and compared to the traditional use of supervised pre-training using ImageNet. Two different methods of self-supervised learning are evaluated, a reconstructive method and a contrastive method. Furthermore, whether including modalities unique to remote sensing data yields greater performance for semantic segmentation is investigated. The findings indicate that self-supervised learning with in-domain data shows significant potential. While the performance of models pre-trained using self-supervised learning on remote sensing data, does not surpass that of pre-trained models using supervised learning on ImageNet, it achieves a comparable level. This is notable given the substantially smaller training data used. However, in cases where the in-domain dataset is small — as in this thesis with approximately 20,000 images — leveraging ImageNet for pre-training is preferable. Furthermore, self-supervised learning demonstrates promise as a more effective pre-training approach compared to supervised learning, when both methods are trained on ImageNet. The reconstructive method proves more suitable for semantic segmentation of remote sensing data compared to the contrastive method, and incorporating modalities unique to remote sensing further enhances performance. |