Knowledge Distillation for Semantic Segmentation and Autonomous Driving. : Astudy on the influence of hyperparameters, initialization of a student network and the distillation method on the semantic segmentation of urban scenes.
Autor: | Sanchez Nieto, Juan |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | Reducing the size of a neural network whilst maintaining a comparable performance is an important problem to be solved since the constrictions on resources of small devices make it impossible to deploy large models in numerous real-life scenarios. A prominent example is autonomous driving, where computer vision tasks such as object detection and semantic segmentation need to be performed in real time by mobile devices. In this thesis, the knowledge and spherical knowledge distillation techniques are utilized to train a small model (PSPNet50) under the supervision of a large model (PSPNet101) in order to perform semantic segmentation of urban scenes. The importance of the distillation hyperparameters is studied first, namely the influence of the temperature and the weights of the loss function on the performance of the distilled model, showing no decisive advantage over the individual training of the student. Thereafter, distillation is performed utilizing a pretrained student, revealing a good improvement in performance. Contrary to expectations, the pretrained student benefits from a high learning rate when training resumes under distillation, especially in the spherical knowledge distillation case, displaying a superior and more stable performance when compared to the regular knowledge distillation setting. These findings are validated by several experiments conducted using the Cityscapes dataset. The best distilled model achieves 87.287% pixel accuracy and a 42.0% mean Intersection-Over-Union value (mIoU) on the validation set, higher than the 86.356% pixel accuracy and 39.6% mIoU obtained by the baseline student. On the test set, the official evaluation obtained by submission to the Cityscapes website yields 42.213% mIoU for the distilled model and 41.085% for the baseline student. Att minska storleken på ett neuralt nätverk med bibehållen prestanda är ett viktigt problem som måste lösas, eftersom de begränsade resurserna i små enheter gör det omöjligt att använda stora modeller i många verkliga situationer. Ett framträdande exempel är autonom körning, där datorseende uppgifter som objektsdetektering och semantisk segmentering måste utföras i realtid av mobila enheter. I den här avhandlingen används tekniker för destillation av kunskap och sfärisk kunskap för att träna en liten modell (PSPNet50) under övervakning av en stor modell (PSPNet101) för att utföra semantisk segmentering av stadsscener. Betydelsen av hyperparametrarna för destillation studeras först, nämligen temperaturens och förlustfunktionens vikter för den destillerade modellens prestanda, vilket inte visar någon avgörande fördel jämfört med individuell träning av eleven. Därefter utförs destillation med hjälp av en utbildad elev, vilket visar på en god förbättring av prestanda. Tvärtemot förväntningarna har den utbildade eleven en hög inlärningshastighet när utbildningen återupptas under destillation, särskilt i fallet med sfärisk kunskapsdestillation, vilket ger en överlägsen och stabilare prestanda jämfört med den vanliga kunskapsdestillationssituationen. Dessa resultat bekräftas av flera experiment som utförts med hjälp av datasetet Cityscapes. Den bästa destillerade modellen uppnår 87.287% pixelprecision och ett 42.0% medelvärde för skärning över union (mIoU) på valideringsuppsättningen, vilket är högre än de 86.356% pixelprecision och 39.6% mIoU som uppnåddes av grundstudenten. I testuppsättningen ger den officiella utvärderingen som gjordes på webbplatsen Cityscapes 42.213% mIoU för den destillerade modellen och 41.085% för grundstudenten. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |