Initial access in 5G mmWave networks with different base station parameters

Autor: Yang, Xiao
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Druh dokumentu: Text
Popis: Nowadays in the fifth generation (5G) communication systems, millimeter wave (mmWave) has aroused interest to not only industrial use but also network operators due to the massive amount of bandwidth available at mmWave frequencies. Initial access in cellular systems is an essential procedure in which new mobile user equipment (UE) establishes a connection with a base station (BS). However, mmWave relies on highly directional beamforming (BF) to overcome its severe path loss, while the initial access requires a wide beam to obtain sufficient information for beamforming. So the challenge is to handle the balance between highly directional mmWave and fast and reliable initial access. The high path loss of millimetre wave transmission dictates that multiple BSs may be closer and interfere more with each other. We focus our study on two BS parameters under the random search method. In our study, the beamwidth can be different for each BS, but a uniform number of slot limits needs to be chosen for all BSs. Our objective is to obtain the best parameters for each BS in a reasonable period of time. We build a systemlevel simulation in MATLAB and explored a variety of methods to select the best parameters, including reinforcement learning, supervised learning, and genetic algorithms. It is identified that the main challenge of applying reinforcement learning and supervised learning is the exponentially growing variety of BS parameters. A genetic algorithm is able to derive approximate best values in complex relational species. Therefore the genetic algorithm is considered to be able to be applied in scenarios with a high number of BSs. The result shows that reinforcement learning has great performance in a few BS cases, and the genetic algorithm is able to provide a large improvement over most of the BS methods with the same parameters.
I den femte generationens kommunikationssystem har millimetervågor väckt intresse, inte bara inom industrin utan även hos nätverksoperatörer, på grund av den enorma bandbredd som finns tillgänglig vid mmWave-frekvenser. Initial access i cellulära system är ett viktigt förfarande där ny mobil användarutrustning upprättar en anslutning till en basstation. mmWave är dock beroende av starkt riktad strålformning för att övervinna den allvarliga vägförlusten, medan den inledande åtkomsten kräver en bred stråle för att få tillräcklig information för strålformning. Utmaningen består alltså i att hantera balansen mellan mycket riktgivande mmWave och snabb och tillförlitlig initial access. Den höga vägförlusten för millimetervågsöverföring innebär att flera stationära basstationer kan vara närmare varandra och störa varandra mer. Vi fokuserar vår studie på två parametrar för BS med hjälp av metoden för slumpmässig sökning. I vår studie kan strålbredden vara olika för varje BS, men ett enhetligt antal slotgränser måste väljas för alla BS. Vårt mål är att få fram debästa parametrarna för varje BS på en rimlig tidsperiod. Vi bygger upp en simulering på systemnivå i MATLAB och utforskade en rad olika metoder för att välja de bästa parametrarna, bland annat förstärkningsinlärning, övervakad inlärning och genetiska algoritmer. Det konstateras att de största utmaningarna vid tillämpning av förstärkningsinlärning och övervakad inlärning är det exponentiellt växande utbudet av parametrar för BS. Genetisk algoritm kan härleda ungefärliga bästa värden i komplexa relationella arter. Därför anses den genetiska algoritmen kunna tillämpas i scenarier med ett stort antal BSs. Resultatet visar att förstärkningsinlärning har stor prestanda i ett fåtal BS-fall och att genetisk algoritm kan ge en stor förbättring jämfört med de flesta BS-metoder med samma parametrar.
Databáze: Networked Digital Library of Theses & Dissertations