Regulariserad linjär regression för modellering av företags valutaexponering

Autor: Hahn, Karin, Tamm, Erik
Jazyk: švédština
Rok vydání: 2021
Předmět:
Druh dokumentu: Text
Popis: Inom fondförvaltning används kvantitativa metoder för att förutsäga hur företags räkenskaper kommer att förändras vid nästa kvartal jämfört med motsvarande kvartal året innan. Banken SEB använder i dag multipel linjär regression med förändring av intäkter som beroende variabel och förändring av valutakurser som oberoende variabler. Det är problematiskt av tre anledningar. Först och främst har valutor ofta stor multikolinjäritet, vilket ger instabila skattningar. För det andra det kan ett företags intäkter bero på ett urval av de valutor som används som data varför regression inte bör ske mot alla valutor. För det tredje är nyare data mer relevant för prediktioner. Dessa problem kan hanteras genom att använda regulariserings- och urvalsmetoder, mer specifikt elastic net och viktad regression. Vi utvärderar dessa metoder för en stor mängd företag genom att jämföra medelabsolutfelet mellan multipel linjär regression och regulariserad linjär regression med viktning. Utvärderingen visar att en sådan modell presterar bättre i 65,0 % av de företag som ingår i ett stort globalt aktieindex samt får ett medelabsolutfel på 14 procentenheter. Slutsatsen blir att elastic net och viktad regression adresserar problemen med den ursprungliga modellen och kan användas för bättre förutsägelser av intäkternas beroende av valutakurser.
Quantative methods are used in fund management to predict the change in companies' revenues at the next quarterly report compared to the corresponding quarter the year before. The Swedish bank SEB already uses multiple linear regression with change of revenue as the depedent variable and change of exchange rates as independent variables. This is problematic for three reasons. Firstly, currencies often exibit large multicolinearity, which yields volatile estimates. Secondly, a company's revenue can depend on a subset of the currencies included in the dataset. With the multicolinearity in mind, it is benifical to not regress against all the currencies. Thirdly, newer data is more relevant for the predictions. These issues can be handled by using regularisation and selection methods, more specifically elastic net and weighted regression. We evaluate these methods for a large number of companies by comparing the mean absolute error between multiple linear regression and regularised linear regression with weighting. The evaluation shows that such model performs better for 65.0% of the companies included in a large global share index with a mean absolute error of 14 percentage points. The conclusion is that elastic net and weighted regression address the problems with the original model and can be used for better predictions of how the revenues depend on exchange rates.
Databáze: Networked Digital Library of Theses & Dissertations