Algorithmic Study on Prediction with Expert Advice : Study of 3 novel paradigms with Grouped Experts
Autor: | Cayuela Rafols, Marc |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2018 |
Předmět: | |
Druh dokumentu: | Text |
Popis: | The main work for this thesis has been a thorough study of the novel Prediction with Partially Monitored Grouped Expert Advice and Side Information paradigm. This is newly proposed in this thesis, and it extends the widely studied Prediction with Expert Advice paradigm. The extension is based on two assumptions and one restriction that modify the original problem. The first assumption, Grouped, presumes that the experts are structured into groups. The second assumption, Side Information, introduces additional information that can be used to timely relate predictions with groups. Finally, the restriction, Partially Monitored, imposes that the groups’ predictions are only known for one group at a time. The study of this paradigm includes the design of a complete prediction algorithm, the proof of a theoretical bound of the worse-case cumulative regret for such algorithm, and an experimental evaluation of the algorithm (proving the existence of cases where this paradigm outperforms Prediction with Expert Advice). Furthermore, since the development of the algorithm is constructive, it allows to easily build two additional prediction algorithms for the Prediction with Grouped Expert Advice and Prediction with Grouped Expert Advice and Side Information paradigms. Therefore, this thesis presents three novel prediction algorithms, with corresponding regret bounds, and a comparative experimental evaluation including the original Prediction with Expert Advice paradigm. Huvudarbetet för den här avhandlingen har varit en grundlig studie av den nya Prediction with Partially Monitored Grouped Expert Advice and Side Information paradigmet. Detta är nyligen föreslagit i denna avhandling, och det utökar det brett studerade Prediction with Expert Advice paradigmet. Förlängningen baseras på två antaganden och en begränsning som ändrar det ursprungliga problemet. Det första antagandet, Grouped, förutsätter att experterna är inbyggda i grupper. Det andra antagandet, Side Information, introducerar ytterligare information som kan användas för att i tid relatera förutsägelser med grupper. Slutligen innebär begränsningen, Partially Monitored, att gruppens förutsägelser endast är kända för en grupp i taget. Studien av detta paradigm innefattar utformningen av en komplett förutsägelsesalgoritm, beviset på en teoretisk bindning till det sämre fallet kumulativa ånger för en sådan algoritm och en experimentell utvärdering av algoritmen (bevisar förekomsten av fall där detta paradigm överträffar Prediction with Expert Advice). Eftersom algoritmens utveckling är konstruktiv tillåter den dessutom att enkelt bygga två ytterligare prediksionsalgoritmer för Prediction with Grouped Expert Advice och Prediction with Grouped Expert Advice and Side Information paradigmer. Därför presenterar denna avhandling tre nya prediktionsalgoritmer med motsvarande ångergränser och en jämförande experimentell utvärdering inklusive det ursprungliga Prediction with Expert Advice paradigmet. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |