Popis: |
In this thesis, after a general introduction, we first review some differential geometry to provide the mathematical background needed to derive the key equations in cosmology. Then we consider the Robertson-Walker geometry and its relationship to cosmography, i.e., how one makes measurements in cosmology. We finally connect the Robertson-Walker geometry to Einstein's field equation to obtain so-called cosmological Friedmann-Lemaître models. These models are subsequently studied by means of potential diagrams. |