Utilization of Rhodopsin in ITO Surface Modification and Study on the Energy Transfer between Rhodopsin and Conjugated Polymers

Autor: Yi-Hsiang Huang, 黃郁翔
Rok vydání: 2019
Druh dokumentu: 學位論文 ; thesis
Popis: 107
A new kind of bacteriorhodopsin HmBRI was found in Haloarcula marismortui. HmBRI-D94N is a light driven proton pump, which is functioned by a series of conformational changes of the retinal inside the protein in the presence of light illumination. It can pump out a proton and change the pH value of environment in a very short time. HmBRI-D94N can be engineered for application for biotechnology, including molecular memory devices, light-triggered drug delivery, and a protein sensor. The first part of this study focuses on changing the wavelength of stimulating light to drive HmBRI-D94N, by introducing water-soluble conjugated polymer. The proton-pump functionality of HmBRI-D94N is triggered by absorbing primarily green light. Theoretically speaking, a polymer which can convert other wavelengths into green fluorescence should be capable of activating HmBRI-D94N by Förster resonance energy transfer (FRET). PPESO3 (conjugated polyelectrolyte) and poly(fluorine-alt-benzothiadiazole) (PFBT, water-soluble nanoparticles) are examined for this purpose. The results indicate that the FRET can take place between PFBT and HmBRI-D94N. The second part is the surface modification of indium tin oxide (ITO) glass by HmBRI-D94N, aiming at stably fastening HmBRI-D94N onto the ITO glass. A combination of nitrilotriacetic acid and nickel ion was employed to absorb HmBRI-D94N by establishing the coordination between polyhistidine-tag of HmBRI-D94N and nickel. This modification can be achieved; however, the coordination is not stable enough. HmBRI-D94N can be easily removed from the ITO surface by water and in the presence of imidazole‎. (3-(Ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine (EDC) and N-hydroxysuccinimide (NHS) were then utilized to build covalent bond between HmBRI-D94N and NTA. The corresponding device performs good stability against water and even imidazole, validating that HmBRI-D94N can be stably fastened on the ITO glass by our approaches.
Databáze: Networked Digital Library of Theses & Dissertations