Study of Metal Nanoparticles/Graphene Nanohybrids as Counter Electrode for Dye-sensitized Solar Cells

Autor: Yu-En Shih, 施友恩
Rok vydání: 2018
Druh dokumentu: 學位論文 ; thesis
Popis: 106
In this study, we investigated the dispersibility of graphene-based material by a simple solution dispersion processing with the polyamide surfactant; utilization of nanocomposites in the counter electrode of DSSC was discussed in the same time. In the beginning, surfactant was synthesized and analysis by FT-IR, GPC, solubility. By efficiently assisting reduced graphene oxide(rGO), polyamide surfactant was used in the further experiment. Secondly, to elaborate mechanism of dispersion, different rGO were analyzed by Raman spectrum, FT-IR and element analysis. Thirdly, dye-sensitized solar cell with different oxygen-containing rGO-based counter electrode were studied. TiO2, N719, and I-/I3- were used to compose the DSSCs. The DSSC with the GO20(20% oxygen-containing) counter electrode exhibited a power conversion efficiency(η) of 5.8 %, which was comparable with DSSC with Pt electrode (7 %) under AM 1.5 illumination of 100mW cm-2. With sputter 10 nm platinum on GO20 counter electrode, the efficiency achieved 6.8 % which superior to 10 nm Pt counter electrode (3.4%). The result indicated rGO-based counter electrode need sufficient active site to catalyze tri-iodide. Finally, DSSC of FTO-free rGO/gold nanoparticles(AuNPs) were studied, replacing FTO and platinum by rGO/AuNPs film. The film with rGO/AuNPs exhibited low sheet resistance 10.3 Ω/sq, which is lower than FTO 12 Ω/sq sheet resistance. The different weight ratio of rGO/AuNPs were measured at 200/1, 20/1, 2/1. FTO-free DSSC with rGO/AuNPs 20/1 display highest efficiency at 3.66%, surpass the efficiency of FTO-free Pt electrode with 3.11% efficiency. The result provided an achievable way to enhance efficiency and cost-reduction of DSSCs.
Databáze: Networked Digital Library of Theses & Dissertations