A Balun-Less Frequency Multiplier with Differential Output by Current Flow Manipulation
Autor: | Wei-Min Wu, 吳維旻 |
---|---|
Jazyk: | zh-TW |
Rok vydání: | 2016 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 104 This thesis presents a balun-less frequency multiplier architecture which can provide differential output without any additional balun required. The architecture manipulates the current flows around the multiplier core to enforce the output currents being generated from the same current loop by introducing a multifunction network at the multiplier input. This network works as an impedance matching network at the input frequency fin while becoming a band-stop filter at the desired output harmonic frequency Nfin for rejecting any N-th harmonic current flowing back to the multiplier input. Moreover, the intrinsic Miller capacitance of the multiplier transistors, Cgd, provides high band-stop rejection which greatly eases the multifunction network design. Hence the multiplier outputs are guaranteed to be perfectly differential as the output currents with same amplitude and phase flow into and out the loads with same impedance, respectively. A 60-GHz frequency doubler (FD) realized in a 90-nm CMOS technology is designed to verify the proposed frequency multiplier architecture. The measured phase and amplitude imbalance of the FD are only 0.5° and 0.2 dB while providing conversion gain of -5.5 dB at the output frequency of 60 GHz. The 3-dB fractional bandwidth is 22.6%. The fundamental rejection is better than 16.3 dB within the bandwidth. The FD consumes 15.9 mW from a 1 V supply as an input signal with -2 dBm power is applied. A 94-GHz receiver front-end (RFE) which integrates a five-stage low-noise amplifier, a broadband LO balun, a single-balanced mixer, and a FD adopting the proposed FD architecture is also exhibited in this thesis. Implemented in a 90-nm CMOS technology, the RFE can provide simulated voltage conversion gain of 26.3 dB and double-sideband noise figure of 12.2dB at the IF frequency of 10 MHz while only consuming 20.4 mW from a 1 V supply. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |