Synthesis of functionalized graphene oxide and functionalized exfoliated graphene nanoplatelets and effects of nano-scale and submicron-scale core-shell rubber additives, inorganic silica /organic polymer core-shell particle, functionalized graphene oxide, and functionalized exfoliated graphene nanoplatelet on the volume shrinkage, mechanical properties and cured sample morphology for unsaturated polyester and vinyl ester resins
Autor: | CHIEN-CHENG TSENG, 曾建誠 |
---|---|
Rok vydání: | 2015 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 103 The effects of the submicron-scale core–shell rubber (CSR), nano-scale silane-grafted silica nanoparticles (SNP) and thermally reduced graphene oxide as special additives on volume shrinkage characteristics and mechanical properties of the styrene (St)/vinyl ester resin(VER)/special additive ternary systems cured at 120 ℃ and post cured at 150 ℃have been investigated. The SNP with a diameter of 15 nm was synthesized by size-controllable hydrolysis of elemental silicon, followed by the surface treatment of 3-methacryloxypropyltrimethoxysilane (γ-MPS) to obtain the MPS-silica. The CSRs were synthesized by two-stage soapless emulsion polymerizations, where the soft core was made from rubbery poly(n-butyl acrylate), and the hard shell was made from 85 mole% of methyl methacrylate, 15mol% glycidyl methacrylate, and 1mole% of ethylene glycol dimethacrylate as the crosslinking agent. The experimental results are explained by an integrated approach of measurements of the static phase characteristics of a St/VER/special additive system, the cured sample morphology with SEM, TEM, and mechanical properties. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |