Operation Planning of Virtual Power Plant with Demand Response

Autor: Sheng-kai Lin, 林聖開
Rok vydání: 2015
Druh dokumentu: 學位論文 ; thesis
Popis: 103
Owing to the increase of power demand and rising awareness of environmental protection, people start to adopt clean power. Many countries enact codes to promote the development of renewable energy, including photovoltaic, wind turbine and hydro generator. The growing demand has been a heavy burden on the power system. In order to meet the demand, the concept of virtual power plant has been proposed. The concept integrates the operation of supply-side and demand-side assets to meet customer demand for energy services in both the short-term and long-term. In short-term, virtual power plant makes extensive and sophisticated use of information technology, smart meter, automated control capabilities and electricity storage to match load fluctuations. The concept also treats long-term load reduction achieved through energy efficiency investments, distributed generation, and demand response. Using real-time pricing and demand response schemes, customer energy usage can be charged according to tariff structure to move the non-critical demand to off-peak periods, such as washing machines, dehumidifiers and dish driers. Demand response is one of demand side management schemes. Through adequate incentive offers to customers, peak load demand can be reduced at rush hours, and customer bills can be reduced. In this thesis, we build a virtual power plant model and use the concept of demand response and time of use pricing to control the distributed energy resources, such as battery energy storage system, to maximize the profits. A demand response contract is designed and different factors are taken into account in operation scheduling.
Databáze: Networked Digital Library of Theses & Dissertations