Portfolio of stocks trading by using EEMD-based neural network learning paradigms

Autor: Lai, Yu Chun, 賴昱君
Druh dokumentu: 學位論文 ; thesis
Popis: 102
The main purpose of investing is to earn profits for an investor, but there are many factors that can influence stock price. Investments want to know the price will rise or fall tomorrow. Therefore, how to establish an accurate forecasting model is one of the important issue that researched by researchers of financial market. However, the financial market is considered of a complex, uncertainty, and non-linear dynamic systems. These characteristics are obstacles on constructing model. The measure, EEMD, used in this study is suitable to solve questions that are non-linear but have trends such as financial market, climate and so on. In this thesis, we used three models including ARMA model and two types of EEMD-ANN composite models to forecast the stock price. In addition, we tried to improve ARMA model, so a new model was proposed. Through EEMD, the fluctuation of stock price can be decomposed into several IMFs with different economical meanings. Moreover, we adopted portfolio approach to spread risks. We integrate the static weight and the dynamic weight to decide the optimal weights. Also, we added the moving average indicator to our trading strategy. The subject matters in this study are 10 attention stocks. Our results showed that EEMD-ANN Model 1 is a robust model. It is not only the best model but also can produce near 20% of 1-year return ratio. We also find that our EEMD-ANN model have better outcome than those of the traditional ARMA model. Owing to that, the increases of trading performance would be expected via the selected EEMD-ANN model.
Databáze: Networked Digital Library of Theses & Dissertations