Cerium/Copper Embedded Activated Carbon Catalyst for DeNOx Applications
Autor: | Zih-You Lin, 林子祐 |
---|---|
Rok vydání: | 2014 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 102 The preparation of activated carbon catalysts with highly reductive activity of DeNOx were investigated by wet impregnation method with cerium nitrate and copper nitrate into coconut shell. The pore and characteristics of surface properties of activated carbon catalysts were observed by the BET and SEM-EDS analysis. The effect of nature of impregnated metal, metal concentration, and operating conditions on the reduction activity in the SCR and NSCR were investigated. The property changes of those properties on the performance of catalytic reduction of activated carbon catalysts were also discussed. In this study, cerium, copper and cerium/copper type activated carbon were prepared and they were used for NOx reduction by SCR and NSCR method. It was found that the high specific surface areas of copper type activated carbons were made with low concentration impregnated in coconut shell. The specific surface area can be achieved up to 729 m2/g with 0.025M copper impregnated in the preparation. On the other hand, the higher concentration cerium impregnated decline the surface area and changed the pore properties of catalyst. The pore sizes of catalyst are mainly in the range of micropore size. The high reduction properties of all catalysts were observed in this study. The completely removal of NOx was achieved at 200℃ with copper type catalyst in SCR. On the other hand, the completely removal of NOx was achieved with cerium type catalyst in NSCR at 450℃. In the case of NSCR system, the reduction performance of cerium catalyst is superior to the copper type catalyst with suitable metal content in the carbon. It is concluded that the best reduction activity of copper type catalyst was found in SCR. On the other hand, the reduction activity of cerium type catalyst presented superior performance than copper type in NSCR system. The copper embedded significantly enhanced the reduction activity of catalyst in the bimetal catalysts. It was concluded that the surface area, nature of active metal, metal content in catalyst, and the active site distribution were the key factors to dominated the reduction activity of catalyst in SCR and NSCR system. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |