The Study of Optimal Operating Parameters to Purify Anhydrous Ethanol with Molecular Sieves

Autor: Wei-Cheng Chen, 陳韋誠
Rok vydání: 2013
Druh dokumentu: 學位論文 ; thesis
Popis: 101
In response to the global energy development trend and greenhouse effects, bio-energy applications gradually are being taken seriously. Gasohol is one of the alternative energy. The mixture of anhydrous ethanol which purity was 99.3 wt% or higher blended with gasoline is served as a car fuel that reduces air pollution. Therefore, a system was constructed for bio-ethanol production in this study, and 3A-type molecular sieves were used as adsorbent on ethanol dehydration. When particles in molecular sieves adsorb the water from ethanol samples until they are saturated, regeneration is performed using continuous heating with high-temperature nitrogen. Furthermore, molecular sieves can be reused in every regeneration cycle. During the study, we also applied a response surface methodology to determine an optimized operational model for molecular sieves regeneration. In this study the molasses is used as a raw material for ethanol production. The molasses was fermented and then distilled using the distillation tower. Through the distillation tower, it can produce up to 95.08 wt% of the ethanol concentration in its mixture. This sample was further concentrated using molecular sieves. The results of optimization analysis indicated that the cost of molecular sieves regeneration (the unit energy yield was 0.283 L/ kW-hr) was the lowest at a temperature of 193 °C and a heating time of 7 hr and 40 min. The results also demonstrated that to yield 60 L of anhydrous ethanol did have an energy consumption of 212.1 kW-hr.
Databáze: Networked Digital Library of Theses & Dissertations