Effect of supplementary carbon addition in the treatment of low C/N High-technology industrial wastewater by MBR
Autor: | Lee, Pei-Yun, 李珮芸 |
---|---|
Rok vydání: | 2011 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 100 Along with the technical progress, the people live are getting more and more convenient, however, behind the gorgeous high tech product there is depletion of resources and huge waste. The water resource, which people are closely linked, is indispensable for the producing processes of high-technology industry. The high-technology industry not only has the huge requirement to the water resources, the wastewater produced from producing processes is an important topic. In recent years, with the environmental consciousness upward in Taiwan, the wastewater emission standard of high-technology industry is sterner, and the ammonia nitrogen in the wastewater will be limited in the future. The effect of supplementary carbon addition for the treatment of high-technology industrial wastewater in a membrane bioreactor (MBR) was investigated. The MBR was operated for 346 days under different C/N (BODL/ NH4- -N) ratios, i.e. 0.9, ~ 1 to 20 days; 1.6, ~ 21 to 42 days; 2.8, ~ 43 to 82 days; 3.6, ~ 83 to 141 days; 4.9, ~ 165 to 233 days and 9.6, ~ 240 to 346 days. Irrespective of the C/N ratios investigated, SS and BOD5 removal efficiencies were above 95%. Also, above 80% COD removal efficiency was observed in the entire C/N ratio investigated. In addition, complete nitrification was observed throughout the investigation. However, denitrification and total nitrogen removal efficiencies reached their maximum values at the highest C/N ratio i.e. 9.6 investigated. Real-time PCR analysis revealed 10 times higher ammonia oxidizing bacteria to total bacteria ratio under the highest C/N ratio condition (9.6) compared to the low C/N ratio condition (0.9). In addition, Nitrospira is the main nitrite oxidizing bacteria (NOB). |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |