Aquaporin 1a facilitates CO2 diffusion across the skin of zebrafish larvae

Autor: Pei-lin Chao, 趙珮伶
Rok vydání: 2011
Druh dokumentu: 學位論文 ; thesis
Popis: 99
Aquaporins (AQPs, water channels) are integral membrane proteins that facilitate water transport across cell membrane. However, some member of AQPs was also found to facilitate transport of carbon dioxide (CO2), glycerol, ammonia, and urea. According to their properties, AQPs were divided into three functional groups: aquaporins, aquaammoniaporins, and aquaglyceroporins. In mammalian studies, AQP1-deficient erythrocytes were found to decrease permeability to CO2. In vitro studies by expressing mammalian AQP1 or zebrafish aqp1a in Xenopus oocytes showed that AQP1 is able to facilitate CO2 diffusion. However, in vivo study is still lacking to demonstrate AQP1 is involved in CO2 transport in mammals or other vertebrates. In this study, we used zebrafish larvae as an in vivo model to investigate the function of aqp1a. Results showed that aqp1a mRNA in larvae was induced by hypercapnia (1% CO2) treatment for 7 days. In situ hybridization of aqp1a showed that it was highly expressed in H+-pump-rich cells (HRCs) and Na+ pump-rich cells (NaRCs) and slightly expressed in Na+/Cl- cotrasporter (NCC) cells and keratinocytes of larval skin. Using morpholino knockdown technique to suppress the protein expression of aqp1a and scanning ion-selective electrode technique (SIET) to analyze carbonic acid formation at the surface of specific skin cells, this study demonstrates that aqp1a plays a critical role in CO2 diffusion across the skin of zebrafish larvae.
Databáze: Networked Digital Library of Theses & Dissertations