Mixture design of Si/PA/C composites as an anode lithium-ion battery

Autor: Yi-jin Li, 李奕縉
Rok vydání: 2011
Druh dokumentu: 學位論文 ; thesis
Popis: 99
Lithium-ion (Li-ion) batteries are currently the most widely applied power source in personal electronics. Recently, higher energy density large size batteries have been required in the fields as HEV and EV. The development of alternative anode materials than current graphite/carbon anodes is thus of critical importance. Silicon can be intercalated to a maximum o f 4.4 lithium atoms per silicon atom and the crumbling rate may be slower if the silicon host particles are smaller, it is our idea that the benefits of carbon-silicon composite materials. In this study, we prepare Si/PA/C composite by sol-gel, the material was pyrolyzed at 750◦C and the resulting powder made into an anode. The effects of binders, electrode densities, and conductive carbon on the electrochemical and cycling performance of the Si/PA/C composites were investigated. Finally, ternary organic material consisting of Si, Polymer A (PA), and FMGP (carbon) were prepared using the methodology of mixture design to find the optima formula of Si/PA/C composite by coin cell test. The results were fitted by empirical regression equation and then plotted as the contour diagrams. The data show that the most stable cycle at point, in which materials consisted of Si/PA/C (4.5: 12.5: 83 w/w/w). The Si/PA/C composite exhibited 1st good reversible capacity of 395.4 mAh/g, and its capacity was higher than another experimental grade’s capacity of 359 mAh/g. On the other hand, the Si/PA/C composite was excellent cycle life.
Databáze: Networked Digital Library of Theses & Dissertations