Analysis on cold roll-bonding and sheet hydroforming process of clad metal sheets

Autor: Tseng, Huang-Chi, 曾煌&;#26826;
Rok vydání: 2010
Druh dokumentu: 學位論文 ; thesis
Popis: 99
This study comprises three sections that include cold roll-bonding, forming limit diagrams (FLDs), and sheet hydroforming (SHF). First, the bonding performance of Al/Cu clad metal sheet with different initial thickness and reduction rate were discussed. The heat flux calculation with thermal conduction, plastic heat and friction consideration were adopted in finite element analysis (FEA). The temperatures of clad metal sheet at maximum reduction region were obtained by rigid-plastic FE code (DEFORM-2D), and then the temperature distribution of Al/Cu clad metal sheets with different combinations of process parameter were determined. The simulation results pointed out that higher rotation speed, higher reduction rate, and asymmetrical rotation are positive to improve the bonding performance for clad metal sheets. The possibility of applying FLDs to fracture prediction of clad metal sheets is examined. The forming limits of Al/Cu clad metal sheets with different thickness reduction are investigated via FLD test. Moreover, deep drawing tests are carried out to compare the numerical results. The results pointed out that the fractures of clad metal sheets are predicated by experimental FLDs. For clad metal sheet application, the SHF was adopted to improve the formability of Ti/Al clad metal sheet used in 3C product housings. Some significant process parameters were analyzed for improving formability of clad metal sheet by FEA. In numerical simulation, a virtual film technique was proposed to realistically approach the hydraulic loading for SHF. And pre-bulging and tool modification are proposed to reduce thinning ratio of Ti/Al clad metal sheet, operation stage, and tooling cost.
Databáze: Networked Digital Library of Theses & Dissertations