Preparation and characterization of solar spectrally selective absorber coatings

Autor: Ching-Li Huang, 黃井勵
Rok vydání: 2010
Druh dokumentu: 學位論文 ; thesis
Popis: 98
This study was divided into two parts. The first part was the solar absorber coatings prepared using a commercial paint via different coating processes (doctor blading, dip coating, and spray method). The absorbance of the solar spectrally selective absorber coatings can reach to 0.92~0.94, and the temperature increment of the copper substrates after exposing under a standard sunlight intensity can be up to 60~62 oC. It was found that, a high solid content (50 wt%) was required when the absorber coatings were made by using dip coating. Besides, weights of the coated absorber made by using spray method have to exceed 34 g/m2 and 40 g/m2 when DMF and acetone was the solvent, respectively. The adhesion of the absorber coating to the copper substrate was quite good except that of the absorber coating made by using spray method and acetone as the solvent. The second part was the preparation and characterization of poly(urethane) based solar spectrally selective absorber coatings containing gold nanoparticles. Poly(urethane) containing thiol groups acted as the binder and the protecting agent of gold nanoparticles. Gold nanoparticles were formed by reducing HAuCl4 and copper oxides were formed by oxidizing the copper substrate. As the concentration of HAuCl4 increased, both absorbance and photo-thermal conversion performance increased. However, even though the concentration of HAuCl4 was quite low (3.03 mM), the temperature increment of the copper substrates after exposing under a standard sunlight intensity can be up to 67 oC when the solid content of poly(urethane) was quite low.
Databáze: Networked Digital Library of Theses & Dissertations