The design of diffractive optical element applied to chromatic confocal microscopy
Autor: | Cheng-Chieh Shih, 施政杰 |
---|---|
Rok vydání: | 2010 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 98 This paper focuses on the use of diffractive optics theory to design refraction / diffraction composite optical elements to realize the optical axis to generate the optical properties of linear dispersion, with coupling lens to compile with refraction / diffraction composite dispersion optical elements produced by light, and the use of microscopy to improve resolution, the chromatic confocal module to create three dimensional structure of a surface measurement technique. Diffractive optics theory to design two refractive / diffractive optical elements combined to achieve the optical axis to generate the optical properties of linear dispersion and dispersion are in 38000μm about the scope of the use of visible light wavelength "400 nm ~ 800 nm" to chromatic confocal module, as the work of the wavelength, so that with a refractive / diffractive optical elements for chromatic confocal module is about the dispersion range of up to 2000μm, the dispersion in a linear trend. Reduce the divergence angle in the light sensitivity of the test, in the same range of dispersion conditions, compare the positive dispersion trend and negative dispersion trend refraction / diffractive optical elements, found that the trend is negative dispersion allows all wavelengths components the error of back focal length dropped to -4.9% ~ -2.7%, while the spot radius is also reduced to 783μm ~ 584μm, while the trend with a negative dispersion of components of the chromatic confocal module the error of back focal length dropped to -9.2% ~ -11.5 %, and the spot radius can shrink to 176μm ~ 138μm, and the minimum line width of refractive / diffractive optical elements was 30.5μm, can be ultra-precision machining. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |