Design for Mixed-Voltage I/O Buffer against Hot-Carrier Degradation and Gate-Oxide Reliability
Autor: | Hui-Wen Tsai, 蔡惠雯 |
---|---|
Rok vydání: | 2008 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 97 Rapid development of complementary metal oxide semiconductor (CMOS) techniques desires the transistor dimension to scale down with lower supply voltage continually for reducing chip area, increasing operating speed, and diminishing power consumption. When thickness of gate oxide becomes much thinner and the length of MOS transistor becomes shorter corresponding to smaller device size, the decreasing maximum tolerable voltage across the transistor terminals makes the design of mixed-voltage I/O buffer facing reliability problems such as gate-oxide reliability, hot-carrier degradation, and undesired circuit leakage paths with input signal higher than the voltage level of supply voltage. In this thesis, a new 2xVDD-tolerant I/O buffer circuit, realized with only 1xVDD devices in nanoscale CMOS technology, to prevent transistors against gate-oxide reliability and hot-carrier degradation is presented. The new proposed 2xVDD-tolerant I/O buffer has been implemented in a 130-nm CMOS process to serve a 2.5-V/1.2-V mixed-voltage interface without using the additional thick gate-oxide (2.5-V) devices. This 2xVDD-tolerant I/O buffer has been successfully confirmed by the experimental results with a signal speed of up to 133 MHz for PCI-X application. Performances as power consumption and the robustness for hot-carrier degradation and gate-oxide overstress are also compared with a few conventional designs. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |