To investigate the influence of Guilu Erxian Gao on the proliferation and differentiation of human tissue stem cells
Autor: | Ching-Ching Chiu, 邱靖晴 |
---|---|
Rok vydání: | 2007 |
Druh dokumentu: | 學位論文 ; thesis |
Popis: | 95 Guilu Erxian Gao( GEG) is a well known traditional Chinese medicine that has been frequently used in the treatment of osteoporosis and other bone diseases, however, the pharmacological base function has not been elucidated. In the present study, we utilize human tissue stem cell to evaluate the influences of GEG on the hematopoietic and non-hematopoietic mesenchymal system. In the hematopoietic response, GEG shown to elevate the total hematopoietic colony numbers, and to promote Granulocyte and Macrophage lineage differentiation. In non- hematopoietic stem/progenitor system, GEG shown to promote osteogenesis, chondrosphere and endothelial tube formations, and sustain the neuron-glial cell differentiations. We found that the promoting osteogenic and chodrosphere formation function by GEG is mainly come from the Tortoise plastron (T.P.) ingredient and the vasculogenic effect by Radix Ginseng ( R.G.). In order to prevent use of T.P. component from the endangered specie animal, several substitute herb candidates have evaluated. Among the candidates we found Dipsacus asper (D.A.), Achyranthes bidentata (A.B.), and Drynaria fortunei (D.F.) are useful substitutes for T.P. Specifically, we found that D.F. as T.P. promotes the total hematopoietic colony forming activity, and Achyranthes bidentata (A.B.) shown promoting the Erythroid lineage differentiation and inhibits the Granulocyte and Macrophage lineage differentiation. In mesenchymal tissue responses, we found that D.F. and D.A. accelerate and increase the chondrosphere formation and S.M. and E.U. promote the vasculargenesis; We further confirmed that D.F., A.B., and D.A have the ability to advance the bone mineralization. In the Functional genomic evaluation, we investigated that the IL-11 expression was down regulated and the BMP-2 and OPN gene expression enhanced by T.P., D.F. and A.B.. At the late stage of osteoblast differentiation, T.P. and D.F. shown enhance the gene expression of Type I collagen., but not the A.B. Althought the substitute T.P. component of GEG needed to be further studied by in vivo animal or clinical investigation, current study provides a cell based molecular pharmacological evidences for GEG prescription and three potential candidates for the T.P. substitute. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |