Effects of packet aggregation on TCP performance

Autor: Jia-ying Lu, 呂佳穎
Rok vydání: 2006
Druh dokumentu: 學位論文 ; thesis
Popis: 94
Due to advances of technologies and growth of Internet usage, demand for larger and larger network capacity remains the major challenge for network operators. To meet the increasing demand, optical network has become the key technology in the current and next-generation Internet. In terms of network architecture, optical packet switching (OPS) is a promising up-star in achieving high efficiency just as the electronic counterpart. However, it is currently far reached because of the difficulty in making optical random access memory and ultra-high cost in making fast optical switches that can handle more than 10^9 packets per second. Optical burst switching (OBS), on the other hand, is a more achievable, economical alternative. In OBS networks, packets are aggregated into much larger sized bursts before entering the core network. It thus does not require fast optical switches. And by incorporating one-way delayed reservation scheme, OBS avoids using optical RAM. There have been many research activities toward OBS. However, for Internet with 90% of TCP traffic, the effect of packet aggregation introduced by OBS on TCP performance is still not well understood. Detti and Listanti derived a model for it and the model was verified in simulation [2]. Yet, we found many of the assumptions in their study are not realistic. The obtained result is therefore questionable. In this thesis, we relax their assumptions and design two new models accordingly in order to get deeper understanding on the effects of packet aggregation on TCP performance. From our simulation results, we conclude three affecting factors: burst assembly, assembly delay and assembler buffer size. Burst assembly shows positive effect, while the other two demonstrate negative effects, on TCP throughput.
Databáze: Networked Digital Library of Theses & Dissertations