Precision Position Control and Experiment Verification of a Piezoelectric Cantilever Beam

Autor: Kun-Ying Lin, 林昆瑩
Rok vydání: 2003
Druh dokumentu: 學位論文 ; thesis
Popis: 91
This study performs precision position control of the piezoelectric cantilever beam with consideration of nonlinearity. Two different dynamic models were obtained. The first one is derived in the forms of linear systems through application of basic physic laws of piezoelectric material, Hamilton’s principle and modeling technique of finite elements. The second one is established as in through experimentally-obtained frequency responses. With theoretical models in hand, the controllers aimed to perform precision positioning of the piezoelectric cantilever beam are next designed to work for a pickup actuator in optical disc drives, which ought to suppress the vibratory disturbance caused by the rotation of the disc. Two types of controllers, PI-and-lag-lead compensator and H∞ controller, are synthesized herein to perform the precision positioning due to the simple structure of the PI-and-lag-lead one and the robustness achieved by the H∞ one. Note that the H∞ controller designed herein would able to work against plant uncertainty, sensor noise and the extraneous disturbance caused by the eccentric rotation of the disk. Simulations are performed to validate the performance expected by previously-designed controllers. Finally, experiments are conducted to verify the effectiveness foreseen by simulations.
Databáze: Networked Digital Library of Theses & Dissertations