Programming models and scheduling techniques for heterogeneous architectures
Autor: | Planas Carbonell, Judit |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | TDX (Tesis Doctorals en Xarxa). |
Druh dokumentu: | Doctoral Thesis |
Popis: | There is a clear trend nowadays to use heterogeneous high-performance computers, as they offer considerably greater computing power than homogeneous CPU systems. Extending traditional CPU systems with specialized units (accelerators such as GPGPUs) has become a revolution in the HPC world. Both the traditional performance-per-Watt and the performance-per-Euro ratios have been increased with the use of such systems. Heterogeneous machines can adapt better to different application requirements, as each architecture type offers different characteristics. Thus, in order to maximize application performance in these platforms, applications should be divided into several portions according to their execution requirements. These portions should then be scheduled to the device that better fits their requirements. Hence, heterogeneity introduces complexity in application development, up to the point of reaching the programming wall: on the one hand, source codes must be adapted to fit new architectures and, on the other, resource management becomes more complicated. For example, multiple memory spaces that require explicit data movements or additional synchronizations between different code portions that run on different units. For all these reasons, efficient programming and code maintenance in heterogeneous systems is extremely complex and expensive. Although several approaches have been proposed for accelerator programming, like CUDA or OpenCL, these models do not solve the aforementioned programming challenges, as they expose low level hardware characteristics to the programmer. Therefore, programming models should be able to hide all these complex accelerator programming by providing a homogeneous development environment. In this context, this thesis contributes in two key aspects: first, it proposes a general design to efficiently manage the execution of heterogeneous applications and second, it presents several scheduling mechanisms to spread application execution among all the units of the system to maximize performance and resource utilization. The first contribution proposes an asynchronous design to manage execution, data movements and synchronizations on accelerators. This approach has been developed in two steps: first, a semi-asynchronous proposal and then, a fully-asynchronous proposal in order to fit contemporary hardware restrictions. The experimental results tested on different multi-accelerator systems showed that these approaches could reach the maximum expected performance. Even if compared to native, hand-tuned codes, they could get the same results and outperform native versions in selected cases. The second contribution presents four different scheduling strategies. They focus and combine different aspects related to heterogeneous programming to minimize application's execution time. For example, minimizing the amount of data shared between memory spaces, or maximizing resource utilization by scheduling each portion of code on the unit that fits better. The experimental results were performed on different heterogeneous platforms, including CPUs, GPGPU and Intel Xeon Phi devices. As shown in these tests, it is particularly interesting to analyze how all these scheduling strategies can impact application performance. Three general conclusions can be extracted: first, application performance is not guaranteed across new hardware generations. Then, source codes must be periodically updated as hardware evolves. Second, the most efficient way to run an application on a heterogeneous platform is to divide it into smaller portions and pick the unit that better fits to run each portion. Hence, system resources can cooperate together to execute the application. Finally, and probably the most important, the requirements derived from the first and second conclusions can be implemented inside runtime frameworks, so the complexity of programming heterogeneous architectures is completely hidden to the programmer. Actualment, hi ha una clara tendència per l'ús de sistemes heterogenis d'alt rendiment, ja que ofereixen una major potència de càlcul que els sistemes homogenis amb CPUs tradicionals. L'addició d'unitats especialitzades (acceleradors com ara GPGPUs) als sistemes amb CPUs s'ha convertit en una revolució en el món de la computació d'alt rendiment. Els sistemes heterogenis poden adaptar-se millor a les diferents necessitats de les aplicacions, ja que cada tipus d'arquitectura ofereix diferents característiques. Per tant, per maximitzar el rendiment, les aplicacions s'han de dividir en diverses parts d'acord amb els seus requeriments computacionals. Llavors, aquestes parts s'han d'executar al dispositiu que s'adapti millor a les seves necessitats. Per tant, l'heterogeneïtat introdueix una complexitat addicional en el desenvolupament d'aplicacions: d'una banda, els codis font s'han d'adaptar a les noves arquitectures i, de l'altra, la gestió de recursos es fa més complicada. Per exemple, múltiples espais de memòria que requereixen moviments explícits de dades o sincronitzacions addicionals entre diferents parts de codi que s'executen en diferents unitats. Per això, la programació i el manteniment del codi en sistemes heterogenis són extremadament complexos i cars. Tot i que hi ha diverses propostes per a la programació d'acceleradors, com CUDA o OpenCL, aquests models no resolen els reptes de programació descrits anteriorment, ja que exposen les característiques de baix nivell del hardware al programador. Per tant, els models de programació han de poder ocultar les complexitats dels acceleradors de cara al programador, proporcionant un entorn de desenvolupament homogeni. En aquest context, la tesi contribueix en dos aspectes fonamentals: primer, proposa un disseny per a gestionar de manera eficient l'execució d'aplicacions heterogènies i, segon, presenta diversos mecanismes de planificació per dividir l'execució d'aplicacions entre totes les unitats del sistema, per tal de maximitzar el rendiment i la utilització de recursos. La primera contribució proposa un disseny d'execució asíncron per gestionar els moviments de dades i sincronitzacions en acceleradors. Aquest enfocament s'ha desenvolupat en dos passos: primer, una proposta semi-asíncrona i després, una proposta totalment asíncrona per tal d'adaptar-se a les restriccions del hardware contemporani. Els resultats en sistemes multi-accelerador mostren que aquests enfocaments poden assolir el màxim rendiment esperat. Fins i tot, en determinats casos, poden superar el rendiment de codis nadius altament optimitzats. La segona contribució presenta quatre mecanismes de planificació diferents, enfocats a la programació heterogènia, per minimitzar el temps d'execució de les aplicacions. Per exemple, minimitzar la quantitat de dades compartides entre espais de memòria, o maximitzar la utilització de recursos mitjançant l'execució de cada porció de codi a la unitat que s'adapta millor. Els experiments s'han realitzat en diferents plataformes heterogènies, incloent CPUs, GPGPUs i dispositius Intel Xeon Phi. És particularment interessant analitzar com totes aquestes estratègies de planificació poden afectar el rendiment de l'aplicació. Com a resultat, es poden extreure tres conclusions generals: en primer lloc, el rendiment de l'aplicació no està garantit en les noves generacions de hardware. Per tant, els codis s'han d'actualitzar periòdicament a mesura que el hardware evoluciona. En segon lloc, la forma més eficient d'executar una aplicació en una plataforma heterogènia és dividir-la en porcions més petites i escollir la unitat que millor s'adapta per executar cada porció. Finalment, i probablement la conclusió més important, és que les exigències derivades de les dues primeres conclusions poden ser implementades dins de llibreries de sistema, de manera que la complexitat de programació d'arquitectures heterogènies quedi completament oculta per al programador. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |