Autor: |
Denk, Robert, Krainer, Thomas |
Jazyk: |
angličtina |
Rok vydání: |
2006 |
Předmět: |
|
Popis: |
It is shown that an elliptic scattering operator A on a compact manifold with boundary with operator valued coefficients in the morphisms of a bundle of Banach spaces of class (HT ) and Pisier’s property (α) has maximal regularity (up to a spectral shift), provided that the spectrum of the principal symbol of A on the scattering cotangent bundle avoids the right half-plane. This is accomplished by representing the resolvent in terms of pseudodifferential operators with R-bounded symbols, yielding by an iteration argument the R-boundedness of λ(A − λ)−1 in R(λ)≥ τ for some τ ∈ IR. To this end, elements of a symbolic and operator calculus of pseudodifferential operators with R-bounded symbols are introduced. The significance of this method for proving maximal regularity results for partial differential operators is underscored by considering also a more elementary situation of anisotropic elliptic operators on Rd with operator valued coefficients. |
Databáze: |
Networked Digital Library of Theses & Dissertations |
Externí odkaz: |
|