Business consulting: Propuesta de mejora en la detección temprana de enfermedades en la crianza de pollos de engorde en la avícola San Fernando
Autor: | Andrade Allende, Duanny Raúl, Cárdenas Salvatierra, Fanny, Morikone Chinen, Giuliana Gianina, Podestá D’Onofrio, Ramiro Antonio, Yaranga Ramos, Jorge Raúl |
---|---|
Jazyk: | španělština |
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | masterThesis |
Popis: | En este trabajo se recogió la problemática de la empresa avícola San Fernando, respecto a los elevados costos que representaba la muerte temprana de los pollos de engorde que iban a ser destinados a la comercialización. Se estima que la muerte temprana de estas aves representa entre el 7% y 10% de la producción total. Esta problemática es común en la mayoría de las empresas avícolas más allá del tamaño o envergadura de estas, de aquí la relevancia de nuestra propuesta. La solución que presentamos a continuación considera el uso de cámaras de video, sensores, internet de las cosas, machine learning e Inteligencia Artificial para la identificación y procesamiento de los datos obtenidos dentro de los ambientes destinados a la crianza de los pollos. Esta información será viable de ser procesada en línea y permitirá a la empresa avícola detectar oportunamente a las aves enfermas para poder tomar acción sobre ellas a tiempo para tratarlas y así reducir la mortalidad. Para el diseño de esta solución, se utilizó la metodología de design thinking tomándose como base, información relevante de las necesidades de los usuarios de distintas áreas en la avícola San Fernando. En base a esto se configuró el prototipo de la solución. La propuesta se considera rentable a un horizonte de cinco años, donde la inversión realizada muestra un periodo de recuperación de 1.7 años y una ganancia en valor actual de USD$329,097. En este sentido, la propuesta se cataloga como deseable, factible y viable de ser implementada. Finalmente, y después de haber validado la necesidad de la propuesta en el proceso de crianza de pollos de San Fernando, se observa un gran potencial de escalabilidad hacia otras empresas del mismo rubro. De la misma forma, el aporte de esta tesis podrá ser de gran soporte, a iniciativas similares para mejorar el proceso de crianza de pollos, ahorro de costos y la eficiencia de procesos. In this project we collected the problem of the poultry company San Fernando, regarding the high costs represented by the early death of broiler chickens that were going to be destined for commercialization. It is estimated that the early death of these birds represents between 7% and 10% of the total production. This problem is common in most poultry companies regardless of their size or scope, hence the relevance of our proposal. The solution we are presenting in this document, considers the use of video cameras, sensors, internet of things, machine learning and Artificial Intelligence for the identification and processing of the data obtained within the environments intended for raising chickens. This information can be processed online and will allow the poultry company to timely detect sick birds in order to take action on them in time to treat them and thus reduce mortality. To design this solution, the design thinking methodology was used, taking relevant information from the needs of users from different areas in the San Fernando poultry farm. Based on this, the prototype of the solution was configured. The proposal is considered profitable over a five-year horizon, where, projected investment would be recovered in 1.7 years and a present value gain of USD$329,097. In this sense, the proposal can be classified as desirable, feasible and viable. Finally, and after having validated the need for the proposal in the process of raising chickens in San Fernando, it is observed a high potential on scalability to other companies within the sector. In the same way, the contribution of this thesis may be of great importance to similar initiatives to improve the process of raising chickens, cost savings and process efficiency. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |