Popis: |
Ultrasonic additive manufacturing (UAM) is a recent additive manufacturing technology which combines ultrasonic metal welding, CNC machining, and mechanized foil layering to create large gapless near net-shape metallic parts. The process has been attracting much attention lately due to its low formation temperature, the capability to join dissimilar metals, and the ability to create complex design features not possible with traditional subtractive processes alone. These process attributes enable light-weighting of structures and components in an unprecedented way. However, UAM is currently limited to niche areas due to the lack of quality tracking and inadequate scientic understanding of the process. As a result, this thesis work is focused on improving both component quality tracking and process understanding through the use of average electrical power input to the welder. Additionally, the understanding and application space of embedding fibers into metals using UAM is investigated, with particular focus on NiTi shape memory alloy fibers. |