Popis: |
It is the purpose of this project to develop a method to quantitatively determine depth profile information using internal reflection spectroscopy. The theory allowing depth profile information to be recovered from variable angle attenuated total reflection (VA-ATR) spectroscopy is shown for both perpendicular and parallel polarization. The major approximation is that the extinction coefficient must be small, so that the field decay due to distance and absorption are comparable. The errors invoked by these approximations are evaluated by comparison with exact optical simulations using dispersion theory. Having shown that the newly developed method is theoretically feasible, it is important to show that it is a viable technique with current instrumentation. It is shown that VA-ATR Fourier transform infrared spectroscopy is a valuable technique to recover depth profile information on the molecular level. A number of known step profiles are measured to determine the limits of applicability for this method. Thickness results obtained using the internal reflection technique are compared with thickness determination using a stylus profilometer. It is shown that the results using p-polarization are somewhat more realistic than s-polarization. The VA-ATR infrared technique was used to investigate the interaction and diffusion of poly(2,6-dimethyl-1,4-phenylene oxide), PPO, and polystyrene, PS. Optical theory was employed to clarify the effect of the local interactions on the infrared spectra. Optical theory was also used to determine composition profiles at various times of inter-diffusion. It was observed that migration occurred between the PPO and the PS layer, even below the glass transition of the PPO. This migration proceeded linearly with time1/2 which is an indication of Fickian diffusion, although the profiles had some additional non-Fickian characteristics |