Contractile function of single muscle fibers from chronically resistance trained humans
Autor: | Shoepe, Todd C. |
---|---|
Rok vydání: | 2001 |
Předmět: | |
Druh dokumentu: | Thesis/Dissertation |
Popis: | Resistance training is widely prescribed for rehabilitation of injuries and as a method to improve athletic performance. It is accepted that resistance training increases the maximal force production of whole muscle and it has been suggested that the velocity of shortening can increase as well. However, little is known about the effects of resistance training at the cellular level. Therefore, we investigated morphology, force production, velocity, and force-velocity-power relationships of single chemically skinned muscle fibers from chronically resistance trained humans, including cross sectional area (CSA), peak Ca²⁺ -activated force production (P₀), specific tension (P₀/CSA), unloaded shortening velocity (V₀), and isotonic contractions. The untrained group (NT) group consisted of sedentary males (n=6, age =27 ± 2 yrs) while the chronically trained group (CHRT) group consisted of males with 7.7 ± 0.4 yrs resistance training experience (n=6, 22 ± 1 yrs). Maximum voluntary isometric and isokinetic knee extensor strength were measured along with 6 repetition maximum (6RM) free weight bench press and leg press. Muscle biopsies were obtained from the vastus lateralis. Chemically skinned single muscle fibers were mounted between a force transducer and servo-controlled motor and subjected to slack tests to determine peak Ca²⁺ -activated force (P₀) and unloaded shortening velocity (V₀). Isotonic load clamps were used to determine the force-velocity-power relationship. All fiber experiments were performed at 15°C. Fiber myosin heavy chain (MHC) content was determined by gel electrophoresis. The CHRT group was 119% and 81% stronger for 6RM leg press and bench press respectively. Peak isometric torque was 28% greater for the CHRT subjects and was significantly higher at all isokinetic speeds tested. No differences were seen in strength or isokinetic power between groups after normalization for lean body mass. CHRT fibers (n=213) expressing type I, IIa, and I₀a/IIx MHC were significantly greater in CSA (+41%, +51%, and +33%, respectively) and produced significantly greater P₀ (+37%, +48%, and +34%, respectively) than NT fibers (n=236). However, P₀/CSA was not different between CHRT and NT groups. Fibers expressing type IIa/IIx fibers produced greater P₀/CSA than IIa which produced greater P₀/CSA than type I. The P₀/CSA relationship between fibers within groups was type IIa/IIx>IIa>I and was significant for both groups. Fiber V₀ was not different between groups. Absolute power was significantly greater in the CHRT for all fiber types whereas power normalized for fiber volume was not different between groups. This resulted in a significantly greater force at peak power for all but type IIa/IIx fibers and trends for greater velocity at peak power. Single-cell contractile function in terms of V₀ and P₀/CSA, measured under standardized conditions, appears to be unaltered as a result of long term CHRT in young adult males. Group differences in absolute P₀ can be attributed solely to the greater CSA of the CHRT fibers. Long-term CHRT is not associated with a difference in fiber V₀. Therefore, the greater power was due entirely to the greater force. These data suggest that differences in whole muscle strength and power between NT and CHRT groups are primarily due to differences in fiber CSA rather than differences in cross-bridge mechanisms of contraction. Supported by National Institute of Health grant R3AR46392A. Graduation date: 2002 |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |