Popis: |
Structural properties of pristine and defected graphene nanoribbons have been investigated by stretching them under 5 percent and 10 percent uniaxial strain until fragmentation. The stretching process has been carried out by performing molecular dynamics simulations (MDS) at 1 K and 300 K to determine the temperature effect on the structure of the graphene nanoribbons. Results of the simulations indicated that temperature, edge shape of graphene nanoribbons and stretching speed have a considerable effect on structural properties, however they have a slight effect on the strain value. The maximum strain at which fracture occurs is found to be 46.41 percent whereas minimum strain value is calculated as 21.00 percent. On the other hand, the defect formation energy is strongly affected from temperature and edge shape of graphene nanoribbons. Stone-Wales formation energy is calculated as -1.60 eV at 1 K whereas -30.13 eV at 300 K for armchair graphene nanoribbon. |