Popis: |
Wireless sensor networks are application-specific networks that necessitate the development of specific network and information processing architectures that can meet the requirements of the applications involved. The most important challenge related to wireless sensor networks is the limited energy and computational resources of the battery powered sensor nodes. Although the central processing of information produces the most accurate results, it is not an energy-efficient method because it requires a continuous flow of raw sensor readings over the network. As communication operations are the most expensive in terms of energy usage, the distributed processing of information is indispensable for viable deployments of applications in wireless sensor networks. This method not only helps in reducing the total amount of packets transmitted and the total energy consumed by sensor nodes, but also produces scalable and fault-tolerant networks. Another important challenge associated with wireless sensor networks is that the possibility of sensory data being imperfect and imprecise is high. The requirement of precision necessitates employing expensive mechanisms such as redundancy or use of sophisticated equipments. Therefore, approximate computing may need to be used instead of precise computing to conserve energy. This thesis presents two schemes that distribute information processing for event-driven reactive applications, which are interested in higher-level information not in the raw sensory data of individual nodes, to appropriate nodes in sensor networks. Furthermore, based on these schemes, a fuzzy rule-based system is proposed that handles imprecision, inherently present in sensory data. |