Production et caractérisation de nanoparticules de Ti3+: Al2O3 par ablation laser
Autor: | Paquet, Stéphan |
---|---|
Jazyk: | francouzština |
Rok vydání: | 2013 |
Předmět: | |
Druh dokumentu: | Texte::Thèse::Mémoire de maîtrise |
Popis: | L’ablation laser est une technique éprouvée pour la fabrication de nanoparticules qui possèdent la composition et les propriétés du matériel original. La plupart des expériences sont réalisées en focalisant des impulsions laser UV à la surface d’une cible monoatomique, soit un métal ou un semi-conducteur. La technique présentée se concentre plutôt sur l’utilisation d’un laser femtoseconde pour faire l’ablation de saphir dopé au titane, Ti3+: Al2O3 ou Ti: saphir. Le Ti: saphir est employé comme milieu de gain dans plusieurs oscillateurs ou amplificateurs laser et possède comme avantage la production d’impulsion ultrabrèves dans l’infrarouge proche. Dans le cadre de ce mémoire, la production de nanoparticules de Ti: saphir par ablation laser est réalisée à l’aide de deux méthodes différentes, la première étant l’ablation dans une enceinte à pression fixe et la deuxième par ablation et transport à l’aide d’un gaz dans une zone à haute température puis par récupération des particules par impact. Des observations au MEB et au MET permettent d’affirmer que les particules et agrégats de particules produits ont une taille qui varie entre 5 et 200 nm, avec quelques particules de plus grande taille. Les particules produites à pression fixe semblent amorphes et possèdent un spectre de fluorescence décalé vers le bleu, tandis que les particules transportées dans la zone à haute température semblent mieux cristallisées et possèdent un spectre qui se rapproche davantage de celui du matériel original. Des expériences de production de nanoparticules de rubis (Cr3+: Al2O3) ont également été réalisées à l’aide de la méthode de combustion de nitrates. Cette méthode a permis de produire facilement de grandes quantités de particules significativement agglomérées avec une fluorescence très forte. Pulsed laser ablation is a well-known technique for the production of nanoparticles that possess the same composition and properties as of the original material. Most of the experiments are done by focusing UV laser pulses on the surface of a monoatomic metallic or semiconductor targets. The technique presented in this work focuses on the use of femtosecond laser pulses to initiate the ablation of titanium doped sapphire, Ti3+: Al2O3 or Ti:sapphire. Ti:sapphire is a well-known laser gain medium, commonly used in femtosecond oscillators or amplificators. In the course of this thesis, pulsed laser ablation of Ti: sapphire and nanoparticle production were made possible by the use of two different methods. The first experiments took place in a vacuum chamber under constant pressure. The second setup used a flow of low pressure helium gas to transport the particles in a high temperature environment before they were collected. SEM and TEM observations lead to the conclusion that the produced particles and particle agglomerates were between 5 and 200 nm in diameter, with a few larger particles. Particles produced in a fixed pressure seem amorphous and their fluorescence spectra are generally blue-shifted. Particles that were passed in the high temperature volume seem to have undergone better crystallization and their spectra are closer to the spectrum of bulk Ti: sapphire. Cr3+: Al2O3 (ruby) nanoparticles were also produced with the low temperature nitrate combustion synthesis method. These experiments produced large quantities of highly agglomerated nanoparticles with very strong fluorescent properties. The fluorescent properties are similar of those of bulk ruby. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |