Theoretical investigations in mitochondrial biophysics
Autor: | Fahimi, Peyman |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Druh dokumentu: | Texte::Thèse::Thèse de doctorat |
Popis: | Titre de l'écran-titre (visionné le 29 mai 2023) La mitochondrie est connue comme la centrale électrique des cellules vivantes. Son rôle est indispensable à la vie et son dysfonctionnement peut entraîner de graves maladies. D'après certaines expériences faites avec des sondes fluorescentes qui se répartissent principalement du côté matrice de la membrane mitochondriale interne, il a récemment été suggéré que la mitochondrie fonctionne à des températures beaucoup plus élevées (~ 50°C) que la température physiologique du corps. Cette découverte, si elle est vraie, nécessiterait la réévaluation de l'efficacité et de tous les cycles thermodynamiques basée sur l'équation de Mitchell, centrale à la théorie chimiosmotique. C'est l'un des aspects de la bioénergétique des mitochondries qui est au cœur du présent projet. Au chapitre 2, des doutes et des critiques concernant la suggestion d'une mitochondrie plus chaude sont soulevés et brièvement discutés. Les implications et répercussions possibles d'une telle affirmation sur certains aspects de la biochimie et de la biophysique mitochondriales sont passées en revue. Une mitochondrie plus chaude - comme on le revendique - impliquerait une correction de 3% du terme de gradient chimique. De plus, si cette affirmation était vraie et dans la mesure revendiquée (10°C), cela impliquererait un certain caractère de moteur thermique (de Carnot) pour le fonctionnement thermodynamique mitochondrial bien que cet aspect ne représente que 4% au plus. Une « mitochondrie chaude » appelle un examen plus approfondi du bilan énergétique qui lui confère ces prétendues températures élevées. Dans les chapitres 3 et 4, comme première étape de cet effort, nous présentons une comptabilité semi-quantitative dans laquelle une formule est proposée qui donne le taux de production de chaleur dans une mitochondrie typique ainsi qu'une formule pour estimer le nombre de molécules d'ATP synthase par mitochondrie. Cent trente types de cellules protozoaires hétérotrophes sont considérés dans cette étude. Les cellules étudiées, sélectionnées pour couvrir une large gamme de tailles (volumes) d'env. 25 µm³ à 125 millions de µm³, sont estimées correspondre à une puissance par mitochondrie allant d'env. 2×10⁰ pW à 4×10⁻⁴ pW. Dans ces cellules, le nombre correspondant d'ATP synthases actives par mitochondrie varie de 37,000 à une dizaine environ. Au chapitre 5, l'origine du désaccord entre la mesure expérimentale et les estimations théoriques est abordée. Étant donné que les estimations théoriques à l'état d'équilibre placent la différence de températures entre la mitochondrie et son environnement à un maximum de 10⁻⁵ °C, ce désaccord de 6 ordres de grandeur est appelé le « paradoxe de la mitochondrie chaude. » On suggère que chaque proton transloqué via l'ATP synthase déclenche un pic de différence de température, qui durerait seulement quelques picosecondes, de l'ordre de magnitude mesuré par Chrétien et al. La moyenne temporelle de ces pics de température redonne la valeur théorique. De plus, une superposition temporelle et spatiale de l'intensité de fluorescence d'un très grand nombre de thermomètres moléculaires dans l'échantillon peut donner l'apparence d'un signal stable et continu. La membrane mitochondriale interne semble être flanquée de différences de températures fluctuant dans le temps et le long de la surface de la membrane, avec des points « chauds » et « froids » sous forme de pointes de température ultrabrèves. Au chapitre 6, il est montré que le potentiel électrostatique moléculaire intrinsèque (MESP) de l'ATP synthase s'ajoute de manière constructive au potentiel électrostatique chimiosmotique et donc le renforce. Cette tension due à la structure même de la protéine représente un nouveau terme d'énergie libre qui semble avoir été négligé jusqu'à présent. Ce terme est au moins à peu près égal en ordre de grandeur et opposé en signe à l'énergie nécessaire pour être dissipée comme un démon de Maxwell (principe de Landauer). Le potentiel électrique à travers la membrane mitochondriale interne, dans laquelle le MESP de l'ATP synthase joue un rôle important, doit être maintenu dans certaines limites pour le bon fonctionnement de la cellule. Dans le chapitre 7, un mécanisme qualitatif pour l'homéostasie de ce potentiel de membrane est proposé, par lequel une augmentation du champ électrique ralentirait l'étape limitante de la chaîne de transport d'électrons (ETC). Une augmentation de tension limite ainsi la vitesse de pompage des protons dans l'espace intermembranaire en ralentissant directement l'ETC mais aussi en court-circuitant l'ETC par électroporation de la membrane entraînant une dépolarisation de celle-ci. La thèse se termine par un chapitre sur l'orientation future possible de la recherche et les principales conclusions qui découlent des travaux qui y sont présentés. The mitochondrion is known as the powerhouse of all living cells. Its role is indispensable to life, and its malfunction can lead to serious diseases. On the basis of experiments with fluorescent probes that distribute primarily in the inner mitochondrial membrane and the matrix-side of the inner membrane, it has recently been suggested that the mitochondrion is likely to be operating at much higher temperatures than physiological temperature of the body (~ 50°C). This discovery, if true, would necessitate the re-evaluation of the thermodynamic efficiency and all of the thermodynamic cycles, based on the Mitchell equation central to chemiosmotic theory. It is this aspect of the bio-energetics of mitochondria that is at the core of the present project. In chapter 2, doubts and criticisms regarding the suggestion of a hotter mitochondrion have been raised and are briefly discussed. The possible implications and repercussion of such a claim - if true - on some aspects of mitochondrial biochemistry and biophysics are reviewed. A hotter mitochondrion - as claimed - would imply a 3% correction in the chemical gradient term. Further, if this claim is true and to the extent claimed (10°C), this may imply some heat-engine character for mitochondrial thermodynamic operation albeit this may only represent 4% at most. A "hot mitochondrion" calls for a closer examination of the energy balance that endows it with these claimed elevated temperatures. In chapters 3 and 4, as a first step in this effort, we present a semi-quantitative bookkeeping whereby, in one stroke, a formula is proposed that yields the rate of heat production in a typical mitochondrion and a formula for estimating the number of "active" ATP synthase molecules per mitochondrion. One-hundred thirty heterotrophic protozoa cell types are considered in this study. The studied cells, selected to cover a wide range of sizes (volumes) from ca. 25 µm³ to 125 million µm³, are estimated to exhibit a power per mitochondrion ranging from ca. 2×10⁰ pW to 4×10⁻⁴ pW. In these cells, the corresponding number of active ATP synthases per mitochondrion ranges from 37,000 to just about ten. In chapter 5, the origin of disagreement between the experimental measurement and the theoretical estimates is investigated. Since the steady-state theoretical estimates place the temperature difference between the mitochondrion and its surrounding at a maximum of 10⁻⁵ °C, this million-fold disagreement is called the "hot mitochondrion paradox". It is suggested that every proton translocated via ATP synthase sparks a picosecond temperature-difference spike of the order of magnitude measured by Chrétien et al. Time-averaging of these spikes recovers the theoretical value. Further, a temporal and spatial superposition of the fluorescence intensity of a very large number of molecular thermometer molecules in the sample can give the appearance of a steady signal. The inner mitochondrial membrane appears to be flanked by temperature differences fluctuating in time and along the membrane's surface, with "hot" and "cold" spots as ultrashort temperature spikes. In chapter 6, it is shown that the ATP synthase's intrinsic molecular electrostatic potential (MESP) adds constructively to, and hence reinforces, the chemiosmotic voltage. This ATP synthase voltage represents a new free energy term that appears to have been overlooked. This term, at least in ATP synthase molecules derived from five different organisms, is roughly equal in order of magnitude and opposite in sign to the energy needed to be dissipated as a Maxwell's demon (Landauer principle). The electransic potential across the inner mitochondrial membrane must be maintained within certain bounds for the proper functioning of the cell. In chapter 7, a qualitative mechanism for the homeostasis of this membrane potential is proposed whereby an increase in the electric field slows-down the rate-limiting steps of the electron transport chain (ETC). An increase in voltage thus limits the rate of pumping of the protons in the inter-membrane gap by slowing the ETC directly but also through short-circuiting the ETC by electroporation of the membrane leading to depolarization of the membrane. The thesis ends with a chapter on the possible future directions of this research and the main conclusions that arise from the work presented therein. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |