Une invitation à l'inégalité de Miyaoka-Yau

Autor: Chouha, Paul-Robert
Rok vydání: 2008
Předmět:
Druh dokumentu: Mémoire accepté<br />PeerReviewed
Popis: En 1976, S.T. Yau a observé que la métrique de Kähler-Einstein pouvait être employée pour régler des questions importantes dans la géométrie algébrique. Une des affirmations importantes était l'inégalité entre les nombres de Chern des variétés algébriques. Pour une surface algébrique, S.T.Yau a prouvé 3c₂(M) ≥ c₁²(M), une inégalité prouvée indépendamment par Miyaoka employant des techniques algébriques. De plus, S.T. Yau a montré que l'égalité tenait seulement si la courbure sectionnelle holomorphe de M est constante. Nous allons examiner au chapitre un la preuve de ST. Yau de l'inégalité ci-dessus en utilisant une approche géométrique différentielle et au chapitre deux la preuve de Y. Miyaoka de l'inégalité à l'aide des outils de la géométrie algébrique. ___ MOTS-CLÉS DE L’AUTEUR : Surfaces algébriques de type générale, Variétés Kähler-Einstein, Inégalité de Miyaoka-Yau.
Databáze: Networked Digital Library of Theses & Dissertations