Sol-gel synthesized nanomaterials for environmental applications

Autor: Yang, Xiangxin
Rok vydání: 2008
Předmět:
Druh dokumentu: Dissertation
Popis: Doctor of Philosophy
Department of Chemical Engineering
Larry E. Erickson
Over the past decade, nanomaterials have been the subject of enormous interest. Their defining characteristic is a very small size in the range of 1-100 nm. Due to their nanometer size, nanomaterials are known to have unique mechanical, thermal, biological, optical and chemical properties, together with the potential for wide-ranging industrial applications. Here, we synthesized nanocrystalline metal oxides through the sol-gel process and used these materials as desulfurization adsorbents and photocatalysts. Deep desulfurization of fuels has received more and more attention worldwide, not only because of health and environmental consideration but also due to the need for producing ultra-low-sulfur fuels, which can only be achieved under severe operating conditions at high cost using hydrodesulfurization (HDS). Consequently, development of new and affordable deep desulfurization processes to satisfy the decreasing limit of sulfur content in fuels is a big challenge. Sol-gel derived Cu/Al[subscript]2O[subscript]3 and Zn/Al[subscript]2O[subscript]3 adsorbents have been demonstrated to be effective in the removal of thiophene from a model solution. Results showed that Cu[superscript]+ was the active site and thermal treatment under vacuum was critical for Zn/Al[subscript]2O[subscript]3 since a defective, less crystalline spinel led to stronger interaction between zinc ions and thiophene molecules in the adsorption process. The kinetic study suggested that most of the adsorption occurred in the first 30 min, and adsorption equilibrium was attained after 1.5 h. Both adsorbents showed good regenerative property. TiO2 is considered the most promising photocatalyst due to its high efficiency, chemical stability, non-toxicity, and low cost for degradation and complete mineralization of organic pollutants. However, the use of TiO[subscript]2 is impaired because it requires ultraviolet (UV) activation ([Lambda]
Databáze: Networked Digital Library of Theses & Dissertations