Genome-destabilizing and Mutagenic Effects of Break-induced Replication in Saccharomyces cerevisiae
Autor: | Deem, Angela Kay |
---|---|
Rok vydání: | 2011 |
Předmět: | |
DOI: | 10.7912/C2/2131 |
Popis: | Indiana University-Purdue University Indianapolis (IUPUI) DNA suffers constant damage, leading to a variety of lesions that require repair. One of the most devastating lesions is a double-strand break (DSB), which results in physical dissociation of two pieces of a chromosome. Necessarily, cells have evolved a number of DSB repair mechanisms. One mechanism of DSB repair is break-induced replication (BIR), which involves invasion of one side of the broken chromosome into a homologous template, followed by copying of the donor molecule through telomeric sequences. BIR is an important cellular process implicated in the restart of collapsed replication forks, as well as in various chromosomal instabilities. Furthermore, BIR uniquely combines processive replication involving a replication fork with DSB repair. This work employs a system in Saccharomyces cerevisiae to investigate genetic control, physical outcomes, and frameshift mutagenesis associated with BIR initiated by a controlled HO-endonuclease break in a chromosome. Mutations in POL32, which encodes a third, non-essential subunit of polymerase delta (Pol delta), as well as RAD9 and RAD24, which participate in the DNA damage checkpoint response, resulted in a BIR defect characterized by decreased BIR repair and increased loss of the broken chromosome. Also, increased incidence of chromosomal fusions determined to be half-crossover (HCO) molecules was confirmed in pol32 and rad24, as well as a rad9rad50S double mutant. HCO formation was also stimulated by addition of a replication-inhibiting drug, methyl-methane sulfonate (MMS), to cells undergoing BIR repair. Based on these data, it is proposed that interruption of BIR after it has initiated is one mechanism of HCO formation. Addition of a frameshift mutation reporter to this system allowed mutagenesis associated with BIR DNA synthesis to be measured. It is demonstrated that BIR DNA synthesis is intrinsically inaccurate over the entire path of the replication fork, as the rate of frameshift mutagenesis during BIR is up to 2800-fold higher than normal replication. Importantly, this high rate of mutagenesis was observed not only close to the DSB where BIR is less stable, but also far from the DSB where the BIR replication fork is fast and stabilized. Pol proofreading and mismatch repair (MMR) are confirmed to correct BIR errors. Based on these data, it is proposed that a high level of DNA polymerase errors that is not fully compensated by error-correction mechanisms is largely responsible for mutagenesis during BIR. Pif1p, a helicase that is non-essential for DNA replication, and elevated dNTP levels during BIR also contributed to BIR mutagenesis. Taken together, this work characterizes BIR as an essential repair process that also poses risks to a cell, including genome destabilization and hypermutagenesis. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |