Metalização serigráfica de células solares bifaciais fabricadas por processos térmicos rápidos
Autor: | Mallmann, Ana Paula |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2006 |
Předmět: | |
Zdroj: | Repositório Institucional da PUC_RSPontifícia Universidade Católica do Rio Grande do SulPUC_RS. |
Druh dokumentu: | masterThesis |
Popis: | Made available in DSpace on 2013-08-07T18:54:01Z (GMT). No. of bitstreams: 1 000384224-Texto+Completo-0.pdf: 10046460 bytes, checksum: 1e0f6b329140d03ad3c7c7a4f67be55e (MD5) Previous issue date: 2006 The direct conversion of solar energy into electric power using solar cells have been taking place to solve problems related to energy demand. High efficiency industrial solar cells made on silicon wafer have n+pp+ structure and they can be used as bifacial cells when bulk lifetime is high. This way, with the same material, cells can produce higher power when it is associated to PV concentrators. The aim of this work was to implement and optimize a process to fabricate bifacial solar cells by using rapid thermal furnaces and screen-printing. We have optimized, by simulation, devices of 4 cm2 with different surface dopant concentration and junction depth taking into account the surface recombination velocity and the series resistance. We found out that efficiencies of around 15,6 % and 15,5 % can be obtained for n+ and p+ illumination, respectively. Phosphorous and boron were carried out in a only rapid thermal step. The parameters of best thermal step were investigated by using sheet resistance and minority carrier lifetime measurements. The optimum thermal step has to be made at peak temperature of 850 °C during 1 minute resulting in sheet resistance of 35 Ω/߷ and minority carrier lifetime of 80 μs. Screen-printing was implemented and firing parameters were optimized. Best efficiencies have been achieved when pastes were dried at 150 °C for one minute of processing and fired at 950 °C during one minute too. Although the metal deposition was optimized, high series resistance has been observed in I-V characteristics of the solar cells that we attribute to contact resistance. Best device reached efficiency of 10,2 % (JSC of 30,3 mA/cm2) for n+ illumination and 2,4 % for p+ illumination. A conversão direta de energia solar em eletricidade utilizando células solares vem se destacando como uma das alternativas para solucionar os problemas atuais e futuros da demanda energética. Células solares industriais de alta eficiência fabricadas sobre lâminas de silício com a estrutura n+pp+ podem ser bifaciais quando o tempo de vida dos portadores minoritários no volume é elevado. Desta forma, com a mesma quantidade de material, a célula pode produzir mais potência elétrica, principalmente quando associadas a concentradores fotovoltaicos. O objetivo deste trabalho foi implementar e otimizar um processo para fabricação de células solares bifaciais utilizando fornos de processamento térmico rápido e metalização serigráfica. Foram otimizados, por meio de simulação, dispositivos de 4 cm² com diferentes concentrações de dopante em superfície e profundidades de junção, levando em consideração a velocidade de recombinação em superfície e a resistência série. Foram obtidas eficiências de 15,6 % e 15,5 % para iluminação nas faces n+ e p+, respectivamente. O fósforo e o boro foram difundidos em um único passo térmico. Os melhores parâmetros térmicos (tempo, temperatura e gases) foram investigados por meio da medida da resistência de folha e do tempo de vida dos portadores minoritários. O passo térmico ótimo deve ser realizado à temperatura de 850 °C durante 1 minuto, resultando na resistência de folha de 35 Ω⁄□ e tempo de vida dos portadores minoritários de 80 μs. A serigrafia foi implementada e os parâmetros de recozimento das pastas foram otimizados. As melhores eficiências foram alcançadas quando as pastas foram secas a 150 °C durante um minuto de VIII processamento e recozidas a 950 °C também durante um minuto. Embora a deposição do metal tenha sido otimizada, altas resistências série foram observadas nas características I-V das células solares, que são atribuídas à resistência de contato. O melhor dispositivo apresentou a eficiência de 10,2 % (JSC de 30,3 mA/cm2) para iluminação pela face n+ e de 2,4 % pela face p+. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |