NÃo existÃncia de autovalores do operador de Laplace-Beltrami em grÃficos radiais
Autor: | Francisca Damiana Vieira |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2014 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da UFCUniversidade Federal do CearáUFC. |
Druh dokumentu: | masterThesis |
Popis: | Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico Neste trabalho estudamos o operador de Laplace-Beltrami definido em variedades Riemannianas. AlÃm do espectro de tal operador, apresentamos tambÃm algumas de suas propriedades, como o fato deste operador ser auto adjunto e nÃo negativo. Nosso objetivo principal consiste em analisar a existÃncia de autovalores para o operador de Laplace-Beltrami, sob determinadas condiÃÃes, em superfÃcies que sÃo grÃficos de funÃÃes radiais, definida sobre todo o plano, ou seja, superfÃcies nÃo compactas de revoluÃao. Esta dissertaÃÃo se baseia no artigo On the spectrum of the Laplace-Beltrami Operator on a Non-Compact Surface" de Takao Tayoshi ( Comm. By Kinjir^o Kunugi, M. J. A., Feb. 12,1971). Para realizaÃÃo desse trabalho foram introduzidos conceitos bÃsicos de anÃlise funcional com destaque para o estudo de espaÃos de Hilbert e a teoria espectral de operadores auto adjuntos, geometria riemanniana em superfÃcies e equaÃÃes diferenciais parciais, em particular resultados para operadores elÃpticos de segunda ordem. AlÃm disso, se fizeram necessÃrios alguns resultados de matemÃtica avanÃada. In this work we study the Laplace-Beltrami operator defined on Riemannian manifolds. In addition to the spectrum of such an operator, we also present some of its properties, such as the fact that this operator is self-adjoint and non-negative. Our main goal is to analyze the existence of eigenvalues for the Laplace-Beltrami operator, under certain conditions, for exemple, surfaces that are complete graphs of radial functions, which is a revolution non-compact surfaces. This dissertation is based on the article "On the spectrum of the Laplace-Beltrami Operator on the Non-Compact Surface"of Takao Tayoshi(Comm. By Kinjiro Kunugi, MJA, Feb. 12, 1971). To perform this work were introduced basics concepts of functional analysis, with emphasis on the study of Hilbert spaces and the spectral theory of self-adjoint operators, Riemannian Geometry in surfaces and Partial Differential Equations, in particular results for elliptic operators of second order.In addition, were needed some results for advanced mathematics. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |