Análise isogeométrica aplicada a problemas de interação fluido-estrtura e superfície livre

Autor: Tonin, Mateus Guimarães
Jazyk: portugalština
Rok vydání: 2017
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da UFRGSUniversidade Federal do Rio Grande do SulUFRGS.
Druh dokumentu: masterThesis
Popis: O presente trabalho tem por objetivo desenvolver uma formulação numérica baseada em Análise Isogeométrica para o estudo de problemas de interação fluido-estrutura (IFE) em aplicações envolvendo corpos rígidos submersos, onde escoamentos incompressíveis de fluidos Newtonianos com superfície livre são considerados. Propõe-se o emprego da Análise Isogeométrica por permitir a unificação entre os procedimentos de pré-processamento e análise, melhorando assim as condições de continuidade das funções de base empregadas tanto na discretização espacial do problema como na aproximação das variáveis do sistema de equações. O sistema de equações fundamentais do escoamento é formado pelas equações de Navier-Stokes e pela equação da conservação de massa, descrita segundo a hipótese de pseudo-compressibilidade, em uma formulação cinemática ALE (Arbitrary Lagrangean- Eulerian). A consideração da superfície livre no escoamento se dá tratando o fluido como um meio bifásico, através do método Level Set. O corpo rígido apresenta não linearidade na rotação e restrições representadas por vínculos elásticos e amortecedores viscosos, sendo a equação de equilíbrio dinâmico resolvida através do método de Newmark. O esquema de acoplamento sólido-fluido adotado é o particionado convencional, que impõe condições de compatibilidade cinemáticas e de equilíbrio sobre a interface sólido-fluido, analisando ambos os meios de maneira sequencial. A discretização das equações governantes é realizada através do esquema explícito de dois passos de Taylor-Galerkin, aplicado no contexto da Análise Isogeométrica. Por fim, são analisados alguns problemas da Dinâmica de Fluidos Computacional, de onde se concluiu que os resultados obtidos são bastante consistentes com os fenômenos envolvidos, com as ferramentas exclusivas da Análise Isogeométrica, como o refinamento k, melhorando a convergência dos resultados. Para escoamentos bifásicos, verificou-se que o método Level Set obteve resultados bastante promissores apresentando, entretanto, uma dissipação numérica excessiva. Propõe-se, para estudos futuros, a elaboração de esquemas numéricos que conservem melhor o volume da fase líquida do escoamento.
The present work aims to development of a numerical formulation based on Isogeometric Analysis for the study of Fluid-Structure Interaction problems in applications involving rigid bodies submerged, considering incompressible Newtonian flows with free surface. The use of the Isogeometric Analysis allows unification between the preprocessing and analysis steps, improving then the continuity of the base functions employed, both in the spatial discretization and approximation of the variables in the system of equations. The fundamental flow equations are formed by the Navier-Stokes and the mass conservation, described by de pseudo-compressibility hypothesis, in an ALE (Arbitrary Lagrangean-Eulerian) kinematic formulation. The free surface consideration of the flow is handled treating the fluid like a two- phase medium, using the Level Set method. The rigid body considers nonlinearity in rotation, and restrictions represented by elastic springs and viscous dampers, with the dynamic equilibrium equation being resolved using the Newmark’s method. The solid-fluid coupling scheme is the conventional partitioned, which imposes kinematics and equilibrium compatibility conditions on the solid-fluid interface, analyzing both mediums in a sequential manner. The governing equations are discretized using the explicit two step Taylor-Galerkin method, applied in an Isogeometric Analisys context. Finally, some Computational Fluid Dinamics problems are analysed, from which it was concluded that the results obtained are quite consistent with phenomena involved, with the unique tools of Isogeometric Analysis, such as k-refinement, improving the convergence of the results. For biphasic flows, it was verified that the Level Set method obtained very promising results, presenting, however, an excessive numerical dissipation. For future studies, it is proposed the elaboration of numerical schemes that better preserve the volume of the liquid phase of the flow.
Databáze: Networked Digital Library of Theses & Dissertations