Caracterização das nuvens cirrus na região metropolitana de São Paulo (RMSP) com a técnica de Lidar de retroespalhamento elástico
Autor: | Eliane Gonçalves Larroza |
---|---|
Jazyk: | portugalština |
Rok vydání: | 2011 |
Předmět: | |
Zdroj: | Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP. |
Druh dokumentu: | Doctoral Thesis |
Popis: | Este trabalho, sendo pioneiro no Brasil, teve o intuito de efetuar uma investigação das nuvens cirrus na região Metropolitana de São Paulo (23,33ºS / 46,44ºW), SP, através do sistema MSP-Lidar para o período de Junho à Julho de 2007. Durante este período, foi verificada uma ocorrência de cirrus de aproximadamente 54% sobre o total de medidas efetuadas pelo sistema Lidar. Medidas com Lidar nos forneceram uma alta resolução espacial e temporal destas nuvens, permitindo assim caracterizá-las e classificá-las de acordo com as suas propriedades macro- e microfísicas. Para obter tais parâmetros, uma metodologia própria foi desenvolvida na recuperação dos dados de Lidar e uma robusta estatística foi aplicada para determinar as diferentes classes de cirrus. A metodologia adotada se resumiu basicamente (a) na determinação de períodos estacionários (ou observações) durante a evolução temporal de detecção de cirrus, (b) determinação da base e topo através de um valor limiar para o cálculo das variáveis macrofísicas (altitudes, temperaturas, espessuras geométricas), (c) aplicação do método da transmitância para cada camada de nuvem e a determinação das variáveis microfísicas (profundidade óptica e razão de Lidar). Neste processo, a razão de Lidar é calculada iterativamente até que haja a convergência da mesma. Análises estatísticas de multivariáveis foram efetuadas para a determinação das classes de cirrus. Estas classes são baseadas na espessura geométrica, altitude média e sua respectiva temperatura, a altitude relativa (diferença entre a altura da tropopausa e topo da nuvem) e a profundidade óptica. O uso sucessivo da Análise de Componentes Principais (PCA), do Método de Cluster Hierárquico (MCH) e da Análise de Discriminantes (AD) permitiu a identificação de 4 classes. Vale ressaltar que tais métodos foram aplicados somente para os casos identificados como camadas únicas de nuvens, pois não se observou significativamente a ocorrência de nuvens com multicamadas. A origem de formação das classes de cirrus encontradas, embora apresentando propriedades macro- e microfísicas distintas, foi identificada basicamente como a mesma, isto é, provenientes da injeção de vapor dágua na atmosfera por meio de sistemas frontais e seu respectivo resfriamento para a formação dos cristais de gelo. O mesmo mecanismo de formação também é atribuído aos jatos subtropicais. Uma análise em relação ao perfil de temperatura e a comparação com a literatura mostrou que as cirrus classificadas apresentam possivelmente cristais em forma de placas e colunas hexagonais. As razões de lidar (RL) calculadas também estão de acordo com a literatura. This pioneer work in Brazil, aimed at investigating cirrus clouds in the metropolitan region of São Paulo (23.33 ºS / 46.44 ºW), SP, observed by the MSP-Lidar system in June and July 2007. During this period, cirrus clouds were observed during approximately 54% of the time of all Lidar measurements available. The Lidar provided measurements with high spatial and temporal resolution measurements of these clouds that allowed characterizing and classifying them according to their macro-and microphysical properties. For such parameters, a unique methodology was developed for the Lidar data retrieval and a robust statistic was applied to determine the different classes of cirrus. The following steps were adopted to characterize the observations: (a) the determination of stationary periods (or observations) during the time evolution of cirrus detection, (b) determination of the base and top of clouds through a so called threshold value to derive the macrophysical variables (altitude, temperature, geometrical thickness), (c) the application of the transmittance method for each layer and the determination of cloud microphysical variables (optical depth and Lidar ratio). In this process, the Lidar ratio is calculated iteratively until a convergence of this value is achieved. Multivariate statistical analyses were performed to determine the classes of cirrus. These classes are based on geometric thickness, average altitude and the respective temperature, relative altitude (difference between tropopause height and cloud top) and optical depth. The successive use of Principal Component Analysis (PCA), Hierarchical Clustering Method (HCM) and Discriminant Analysis (DA) allowed the identification of four classes of cirrus. It is important to point out here that such methods were applied only to cases identified as single layers of clouds, due to the rare occurrence of multilayered clouds. The origin of formation for the four cirrus classes, though they have distinct macro-and microphysical properties, was found to be basically the same, i.e., from the injection of water vapor in the atmosphere provided by frontal systems, followed by the cooling process to form ice crystals. The same formation mechanism is also attributed to the subtropical jet. An analysis of the temperature profile and comparison with the literature showed that the cirrus crystals possibly have the form of hexagonal plates and columns. The Lidar Ratio (LR) was also found to be in accordance with the literature. |
Databáze: | Networked Digital Library of Theses & Dissertations |
Externí odkaz: |