Equações diferenciais funcionais em medida e equações dinâmicas funcionais impulsivas em escalas temporais

Autor: Jaqueline Godoy Mesquita
Jazyk: portugalština
Rok vydání: 2012
Předmět:
Zdroj: Biblioteca Digital de Teses e Dissertações da USPUniversidade de São PauloUSP.
Druh dokumentu: Doctoral Thesis
Popis: O objetivo deste trabalho é investigar e desenvolver a teoria de equações dinâmicas funcionais impulsivas em escalas temporais. Mostramos que estas equações representam um caso especial de equações diferenciais funcionais em medida impulsivas. Também, apresentamos uma relação entre estas equações e as equações diferenciais funcionais em medida e, ainda, mostramos uma relação entre elas e as equações diferenciais ordinárias generalizadas. Relacionamos, também, as equações diferenciais funcionais em medida e as equações dinâmicas funcionais em escalas temporais. Obtemos resultados sobre existência e unicidade de soluções, dependência contínua, método da média periódico e não-periódico bem como resultados de estabilidade para todos os tipos de equações descritos anteriormente. Também, provamos algumas propriedades relativas às funções regradas e aos conjuntos equiregrados em espaços de Banach, que foram essenciais para os nossos propósitos. Os resultados novos apresentados neste trabalho estão contidos em 7 artigos, dos quais dois já foram publicados e um aceito. Veja [16], [32], [34], [36], [37], [38] e [84]
The aim of this work is to investigate and develop the theory of impulsive functional dynamic equations on time scales. We prove that these equations represent a special case of impulsive measure functional differential equations. Moreover, we present a relation between these equations and measure functional differential equations and, also, a correspondence between them and generalized ordinary differential equations. Also, we clarify the relation between measure functional differential equations and functional dynamic equations on time scales. We obtain results on the existence and uniqueness of solutions, continuous dependence on parameters, non-periodic and periodic averaging principles and stability results for all these types of equations. Moreover, we prove some properties concerning regulated functions and equiregulated sets in a Banach space which were essential to our purposes. The new results presented in this work are contained in 7 papers, two of which have already been published and one accepted. See [16], [32], [34], [36], [37], [38] and [84]
Databáze: Networked Digital Library of Theses & Dissertations